5 research outputs found

    Investigation of Solar Flare Classification to Identify Optimal Performance

    Get PDF
    When an intense brightness for a small amount of time is seen in the sun, then we can say that a solar flare emerged. As solar flares are made up of high energy photons and particles, thus causing the production of high electric fields and currents and therefore results in the disruption in space-borne or ground-based technological system. It also becomes a challenging task to extract its important features for prediction. Convolutional Neural Networks have gain a significant amount of popularity in the classification and localization tasks. This paper has given stress on the classification of the solar flares emerged on different years by stacking different convolutional layers followed by max pooling layers. From the reference of Alexnet, the pooling layer employed in this paper is the overlapping pooling. Also two different activation functions that are ELU and CReLU have been used to investigate how many number of convolutional layers with a particular activation function provides with the best results on this dataset as the size of the dataset in this domain is always small. The proposed investigation can be further used in a novel solar prediction systems

    Towards Automated and Optimized Security Orchestration in Cloud SLA

    Get PDF
    In cloud computing, providers pool their resources and make them available to customers. Next-generation computer scientists are flocking to the cutting-edge field of cloud computing for their research and exploration of uncharted territory. There are still several barriers that cloud service providers must overcome in order to provide cloud services in accordance with service level agreements. Each cloud service provider aspires to achieve maximum performance as per Service Level Agreements (SLAs), and this is especially true when it comes to the delivery of services. A cloud service level agreement (SLA) guarantees that cloud service providers will satisfy the needs of large businesses and offer their clients with a specified list of services. The authors offer a web service level agreement–inspired approach for cloud service agreements. We adopt patterns and antipatterns to symbolize the best and worst practices of OCCI (Open Cloud Computing Interface Standard), REST (Representational State Transfer), and TOSCA (Topology and Orchestration Specification for Cloud Applications) with DevOps solutions, all of which API developers should bear in mind when designing APIs. When using this method, everything pertaining to the cloud service, from creation to deployment to measurement to evaluation to management to termination, may be handled mechanically. When distributing resources to cloud apps, our system takes into account the likelihood of SLA breaches and responds by providing more resources if necessary. We say that for optimal performance, our suggested solution should be used in a private cloud computing setting. As more and more people rely on cloud computing for their day-to-day workloads, there has been a corresponding rise in the need for efficient orchestration and management strategies that foster interoperability

    Investigation of Solar Flare Classification to Identify Optimal Performance

    No full text
    When an intense brightness for a small amount of time is seen in the sun, then we can say that a solar flare emerged. As solar flares are made up of high energy photons and particles, thus causing the production of high electric fields and currents and therefore results in the disruption in space-borne or ground-based technological system. It also becomes a challenging task to extract its important features for prediction. Convolutional Neural Networks have gain a significant amount of popularity in the classification and localization tasks. This paper has given stress on the classification of the solar flares emerged on different years by stacking different convolutional layers followed by max pooling layers. From the reference of Alexnet, the pooling layer employed in this paper is the overlapping pooling. Also two different activation functions that are ELU and CReLU have been used to investigate how many number of convolutional layers with a particular activation function provides with the best results on this dataset as the size of the dataset in this domain is always small. The proposed investigation can be further used in a novel solar prediction systems

    A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation

    No full text
    Background: Medical image segmentation is more complicated and demanding than ordinary image segmentation due to the density of medical pictures. A brain tumour is the most common cause of high mortality. Objectives: Extraction of tumorous cells is particularly difficult due to the differences between tumorous and non-tumorous cells. In ordinary convolutional neural networks, local background information is restricted. As a result, previous deep learning algorithms in medical imaging have struggled to detect anomalies in diverse cells. Methods: As a solution to this challenge, a deep convolutional generative adversarial network for tumour segmentation from brain Magnetic resonance Imaging (MRI) images is proposed. A generator and a discriminator are the two networks that make up the proposed model. This network focuses on tumour localisation, noise-related issues, and social class disparities. Results: Dice Score Coefficient (DSC), Peak Signal to Noise Ratio (PSNR), and Structural Index Similarity (SSIM) are all generally 0.894, 62.084 dB, and 0.88912, respectively. The model’s accuracy has improved to 97 percent, and its loss has reduced to 0.012. Conclusions: Experiments reveal that the proposed approach may successfully segment tumorous and benign tissues. As a result, a novel brain tumour segmentation approach has been created
    corecore