3,524 research outputs found

    Residual pollutants in treated pulp paper mill wastewater and their phytotoxicity and cytotoxicity in Allium cepa

    Get PDF
    Discharged pulp and paper mill wastewater (PPMW) were collected near M/s K. R. pulp and papers Limited, Shahjahanpur, India. Chemical analysis of the wastewater showed high BOD (3653-4180 mg L-1) and COD (17890-19100 mg L-1) values from two different sampling sites. The levels of total phenol were in the range of 389-432 mg L-1, nitrogen (125-234 mg L-1), sulfate (1926-2098 mg L-1), chloride (3.12-5.43 mg L-1) and lignin (38950-39000 mg L-1) along with various heavy metals (Fe, 87-79; Zn, 34-22; Cu, 3.28-2.57; Cd, 1.90- 0.36; Ni, 6-5, and Pb, 41.23-36.54 mg L-1); these were above the permissible limit as recommended by the CPCB and the USEPA. The BOD/COD ratio was 20% concentration of PPMW, α-amylase production was inhibited and chromosomal segregation at metaphase and anaphase during cell division was disturbed which resulted in c-mitosis, sticky chromosomes, and laggard chromosomes. In addition, SEM of the root of A. cepa showed fissures and fractured tissues of the root cap, probably due to the inhibition of auxins that were responsible for root cap formation. The findings indicated A. cepa as a good test model for examining the DNA damage and cytotoxicity by PPMW; and the discharged effluent should be treated at the tertiary stage for environmental protection

    Distillery wastewater detoxification and management through phytoremediation employing Ricinus communis L.

    Get PDF
    This study aimed to assess the phytoremediation potential of Ricinus communis L. for heavy metals remediation via rhizospheric bacterial activities for distillery wastewater detoxification and management. Results revealed that distillery wastewater contained high levels of metals and other physico-chemical pollution parameters that could cause environmental pollution and aquatic toxicity. The identified bacterium produced several plant growth-promoting compounds including siderophores, ligninolytic enzymes, and indole acetic acid that resulted in nutrient enhancement and improved mineralization of metals in the plants during stress conditions. The bioconcentration factor (BCF) of all the metals examined were > 1, which showed that these metals are accumulating in the root, shoot, and leaves of Ricinus communis L. Most of the metals are stabilised in the roots but Pb, Cd and Zn were translocated more to the shoots (TC>1). The ability of Ricinus communis L. to grow in metals- containing distillery wastewater and reduce heavy metals and organic contaminants suggests that it can be used to provide an effective treatment of distillery wastewater. The use of Ricinus communis L. is an eco-friendly tool for the reduction of organometallic contamination and protecting agricultural land

    Integrating phytoremediation into treatment of pulp and paper industry wastewater: Field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy

    Get PDF
    This work aimed to explore the use of native herbs for the removal of heavy metals from pulp and paper industry wastewater, with the view of applying them as part of a multidisciplinary approach for detoxification. Results showed that after in-situ phytoremediation by the native herbs, the heavy metal, and metalloid contents in the wastewater were reduced by almost 60%. Heavy metal analysis of the plant tissues revealed that Fe accumulation was highest in all the tested plants. In general, the bioconcentration factor (BCF) was higher than one (>1) for all the metals except for Cd, suggesting most of the metals were concentrated in the plant tissues. In particular, As was concentrated significantly in Momordica doica and Cannabis sativa with elevated BCF of 269.46 and 131.20, respectively. High translocation factor (>1) was observed in P. hysterophorus and Tribulus terrestris for Cr (5.63) and Cd (7.53), respectively. Results showed most of the native plants examined in this study had hyperaccumulating tendency. Transmission electron microscope analysis of plant root tissues showed abundant metal depositions in the root cell wall, cytoplasm, and vacuole as strong evidence of the in-situ phytoremediation capability of these plants. Antioxidants activities of the plants such as superoxide dismutase, catalase, hydrogen peroxidase, peroxidase, and ascorbate peroxidase production were also noted to be higher than the control. These results support the use of native plants as a novel green process that can be integrated into the multidisciplinary treatment of hazardous industrial wastewater in the polluted sites

    Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste

    Get PDF
    This study aimed to assess the heavy-metals accumulation patterns by some native plants such as Achyranthus aspera L., Amaranthus viridis, Basella alba L., Sesbania bispinosa, Pedalium murex L., and Momordica doica, which have been traditionally employed for medicinal and food purposes. The plants were grown on complex distillery waste containing a mixture of organometallic compounds. The results revealed bioaccumulation of Mn, Cd, Fe, Cr, Cu, As, Se, Mo, and Co in their roots, shoots, and leaves in levels higher than the surrounding sludge. A. aspera was noted as root accumulator for Mn (16.95 mg kg−1), Zn (30.12 mg kg−1), Fe (240.4 mg kg−1), Co (3.19 mg kg−1), while Se (4.07 mg kg−1), Mo (4.36 mg kg−1), was accumulated selectively in the shoot of the plant. Similarly, S. bispinosa, P. murex, and M. doica were found as root accumulators for Mn, Fe, and Ni. A. viridis accumulated Cd, Zn, and Cu in the shoot and leaves of the plant. The high bioconcentration factors (BCF) and translocation factors (TF) observed in these native plants (>1) suggested their tendency to hyperaccumulate heavy metals. The findings highlighted that these plants as a potential metal accumulator may pose health hazards and deteriorate the medicinal property if grown on such wastes

    Nuclear reaction studies of unstable nuclei using relativistic mean field formalisms in conjunction with Glauber model

    Full text link
    We study nuclear reaction cross-sections for stable and unstable projectiles and targets within Glauber model, using densities obtained from various relativistic mean field formalisms. The calculated cross-sections are compared with the experimental data in some specific cases. We also evaluate the differential scattering cross-sections at several incident energies, and observe that the results found from various densities are similar at smaller scattering angles, whereas a systematic deviation is noticed at large angles. In general, these results agree fairly well with the experimental data.Comment: 9 pages, 7 figures, submitted to PR

    Plant growth promoting strain Bacillus cereus (RCS-4 MZ520573.1) enhances phytoremediation potential of Cynodon dactylon L. in distillery sludge

    Get PDF
    Elevated levels of physico-chemical pollution including organic pollutants, metals and metalloids were detected in distillery sludges despite of the anaerobic digestion treatment prior to disposal. The concentrations of the metals were (in mg kg−1): Fe (400.98 ± 3.11), Zn (17.21 ± 0.54), Mn (8.32 ± 0.42), Ni (8.00 ± 0.98), Pb (5.09 ± 0.43), Cr (4.00 ± 0.98), and Cu (3.00 ± 0.10). An invasive grass species, Cynodon dactylon L., demonstrated its ability to remediate the distillery waste sludge (DWS) in the field study. All the physico-chemical parameters of the sludge significantly improved (up to 70–75%) in the presence of Cynodon dactylon L. (p < 0.001) than the control with no plant growth. The highest phytoremediation capacity was associated with the uptake of Fe in the root and shoot. Sludge samples collected near the rhizosphere also showed lower amount of organic compounds compared to control sludge samples. Metal resistant Bacillus cereus (RCS-4 MZ520573.1) was isolated from the rhizosphere of Cynodon dactylon L. and showed potential to enhance the process of phytoremediation via plant growth promoting activities such as production of high level of ligninolytic enzymes: manganese peroxidase (35.98 U), lignin peroxidase (23.98 U) and laccase (12.78 U), indole acetic acid (45.87(mgL−1), phosphatase activity (25.76 mg L−1) and siderophore production (23.09 mg L−1). This study presents information on the performance of Cynodon dactylon L., an abundant invasive perennial grass species and its associated plant growth promoting rhizobacteria demonstrated good capacity to remediate and restore contaminated soil contained complex organic and inorganic pollutants, they could be integrated into the disposal system of distillery sludge to improve the treatment efficiency

    Biodegradation of organo-metallic pollutants in distillery wastewater employing bioaugmentation process

    Get PDF
    This objective of this work was to study the potential of a constructed bacterial consortium (comprising strains of Stenotrophomonas maltophilia, Bacillus cereus, and Bacillus thuringiensis) to treat distillery wastewater via the bioaugmentation process. The discharged wastewater showed elevated total ammonium nitrogen (195.0 ± 1.24 mg L-1), total dissolved solids (25980.6 ± 8.09 mg L-1), chemical oxygen demand (20534.5 ± 3.12 mg L-1), and biological oxygen demand (20534.5 ± 3.12 mg L-1). High concentration of heavy metals, phenolic and organo-metallic compounds were also detected. Results showed that growing the bacterial consortium in the distillery wastewater at 37 ºC supplemented with 1% glucose achieved the best colour reduction (up to 90 %) in 144 h. The physico-chemical quality of the treated wastewater also improved by 50-70 %. Furthermore, many of the major organic pollutants present in the distillery wastewater were degraded by the constructed consortium to below detection limit via active biotransformation and biodegradation. Heavy metals were biosorbed by the bacterial consortium, and the ligninolytic enzymes such as Lip and MnP played an important role in the degradation of the organo-metallic pollutants. The constructed bacterial consortia therefore offered a sustainable and effective solution to treat distiller wastewater

    Virtual screening, identification and experimental testing of novel inhibitors of PBEF1/Visfatin/NMPRTase for glioma therapy

    Get PDF
    Background: Pre-B-cell colony enhancing factor 1 gene (PBEF1) encodes nicotinamide phosphoribosyltransferase (NMPRTase), which catalyses the rate limiting step in the salvage pathway of NAD+ metabolism in mammalian cells. PBEF1 transcript and protein levels have been shown to be elevated in glioblastoma and a chemical inhibitor of NMPRTase has been shown to specifically inhibit cancer cells. Methods: Virtual screening using docking was used to screen a library of more than 13,000 chemical compounds. A shortlisted set of compounds were tested for their inhibition activity in vitro by an NMPRTase enzyme assay. Further, the ability of the compounds to inhibit glioma cell proliferation was carried out. Results: Virtual screening resulted in short listing of 34 possible ligands, of which six were tested experimentally, using the NMPRTase enzyme inhibition assay and further with the glioma cell viability assays. Of these, two compounds were found to be significantly efficacious in inhibiting the conversion of nicotinamide to NAD+, and out of which, one compound, 3-amino-2-benzyl-7-nitro-4-(2-quinolyl-)-1,2-dihydroisoquinolin-1-one, was found to inhibit the growth of a PBEF1 over expressing glioma derived cell line U87 as well. Conclusions: Thus, a novel inhibitor has been identified through a structure based drug discovery approach and is further supported by experimental evidence

    SUBSTITUTION OF ROOTS WITH SMALL BRANCHES OF RAUWOLFIA SERPENTINA FOR THERAPEUTIC USES - A PHYTOCHEMICAL APPROACH

    Get PDF
    Rauwolfia serpentina commonly called Sarpagandha is a medicinal plant widely used in Ayurveda. As per the Ayurvedic literature, roots of this plant are used in cardiac disorder, cancer, mental illness and psychiatric disorder. To collect roots for medicinal purpose whole plant is uprooted on a mass scale from their natural habitat which is leading to depletion of resources, due to which plant may be difficult in near future for use in traditional systems of medicine. Present study was carried out to assess possibilities of using small branches of R. serpentina in place of its roots which will help in conservation of this plant and availability of raw material for therapeutic purposes. Roots and small branches of R. serpentina are compared on the basis of physicochemical analysis, phytochemical analysis, total phenolic contents, total flavonoid contents and high performance thin layer chromatography (HPTLC) to evaluate the possibilities of using small branches in place of its roots. Results of phytochemical analysis and HPTLC of n-hexane, ethyl acetate and ethanol extracts showed many similarities whichsuggest that small branches may have nearly similar active constituents like roots and may be used as a substitute of roots after comparison and confirmation of same for pharmacological activities
    corecore