28 research outputs found

    Impact of NNLO QED corrections on lepton-proton scattering at MUSE

    Get PDF
    We present the complete next-to-next-to-leading order (NNLO) pure pointlike QED corrections to lepton-proton scattering, including three-photon-exchange contributions, and investigate their impact in the case of the MUSE experiment. These corrections are computed with no approximation regarding the energy of the emitted photons and taking into account lepton-mass effects. We contrast the NNLO QED corrections to known next-to-leading order corrections, where we include the elastic two-photon exchange (TPE) through a simple hadronic model calculation with a dipole ansatz for the proton electromagnetic form factors. We show that, in the low-momentum-transfer region accessed by the MUSE experiment, the improvement due to more sophisticated treatments of the TPE, including inelastic TPE, is of similar if not smaller size than some of the NNLO QED corrections. Hence, the latter have to be included in a precision determination of the low-energy proton structure from scattering data, in particular for electron-proton scattering. For muon-proton scattering, the NNLO QED corrections are considerably smaller

    Impact of NNLO QED corrections on lepton-proton scattering at MUSE

    Get PDF
    We present the complete next-to-next-to-leading order (NNLO) pure pointlike QED corrections to lepton-proton scattering, including three-photon-exchange contributions, and investigate their impact in the case of the MUSE experiment. These corrections are computed with no approximation regarding the energy of the emitted photons and taking into account lepton-mass effects. We contrast the NNLO QED corrections to known next-to-leading order corrections, where we include the elastic two-photon exchange (TPE) through a simple hadronic model calculation with a dipole ansatz for the proton electromagnetic form factors. We show that, in the low-momentum-transfer region accessed by the MUSE experiment, the improvement due to more sophisticated treatments of the TPE, including inelastic TPE, is of similar if not smaller size than some of the NNLO QED corrections. Hence, the latter have to be included in a precision determination of the low-energy proton structure from scattering data, in particular for electron-proton scattering. For muon-proton scattering, the NNLO QED corrections are considerably smaller

    Impact of NNLO QED corrections on lepton-proton scattering at MUSE

    Full text link
    We present the complete next-to-next-to-leading order (NNLO) pure pointlike QED corrections to lepton-proton scattering, including three-photon-exchange contributions, and investigate their impact in the case of the MUSE experiment. These corrections are computed with no approximation regarding the energy of the emitted photons and taking into account lepton-mass effects. We contrast the NNLO QED corrections to known next-to-leading order corrections, where we include the elastic two-photon exchange (TPE) through a simple hadronic model calculation with a dipole ansatz for the proton electromagnetic form factors. We show that, in the low-momentum-transfer region accessed by the MUSE experiment, the improvement due to more sophisticated treatments of the TPE, including inelastic TPE, is of similar if not smaller size than some of the NNLO QED corrections. Hence, the latter have to be included in a precision determination of the low-energy proton structure from scattering data, in particular for electron-proton scattering. For muon-proton scattering, the NNLO QED corrections are considerably smaller.Comment: Article to be submitted to the EPJ A Topical Collection: Radiative Corrections: From Medium to High Energy Experiments. 23 pages, 9 figure

    Reduction of cortical parvalbumin expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition

    No full text
    The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the mechanisms underlying are not known. In a translational hyperoxia model, exposing mice pups at age P5 to 80% oxygen for 48 hours to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin expressing interneurons until adulthood. Developmental delay of cortical myelin was observed together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor being involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning, and attention. These results elucidate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage
    corecore