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Abstract We present the complete next-to-next-to-leading
order (NNLO) pure pointlike QED corrections to lepton-
proton scattering, including three-photon-exchange contri-
butions, and investigate their impact in the case of the MUSE
experiment. These corrections are computed with no approx-
imation regarding the energy of the emitted photons and tak-
ing into account lepton-mass effects. We contrast the NNLO
QED corrections to known next-to-leading order corrections,
where we include the elastic two-photon exchange (TPE)
through a simple hadronic model calculation with a dipole
ansatz for the proton electromagnetic form factors. We show
that, in the low-momentum-transfer region accessed by the
MUSE experiment, the improvement due to more sophisti-
cated treatments of the TPE, including inelastic TPE, is of
similar if not smaller size than some of the NNLO QED
corrections. Hence, the latter have to be included in a preci-
sion determination of the low-energy proton structure from
scattering data, in particular for electron-proton scattering.
For muon-proton scattering, the NNLO QED corrections are
considerably smaller.

1 Introduction

The scattering of electrons and muons off protons has been
used for decades to obtain information on the structure of
the proton. Still, in the regime of low energies, where the
quark content of the proton is not yet resolved and the scat-
tering is described with the help of form factors, there are
several open questions and discrepancies, see [1] for a recent
review. In view of this unsatisfactory situation it is impor-
tant to revisit the theoretical aspects related to the extraction
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of form factors of the proton, with careful consideration of
all effects that influence the differential distributions of the
final-state particles. In addition to the uncertainty budget of
radiative corrections due to hadronic contributions, domi-
nated by the two-photon-exchange (TPE), this also includes
standard QED corrections. The latter can lead to additional
real photons in the final state, and a precise confrontation of
theory with experiment needs to specify how such radiative
events are treated.

The analyses carried out so far have taken into account
QED corrections at next-to-leading order (NLO), often with
additional approximations [2–8]. However, perturbative cal-
culations of QED corrections with pointlike particles to
fully differential cross sections have now reached a matu-
rity that allows to obtain complete next-to-next-to-leading
order (NNLO) corrections to 2 → 2 processes [9–15]. In the
following, we refer to these types of corrections as pureQED
corrections. These computations can be done including mass
effects and without making any approximation on the energy
range of the emitted photons. This provides an opportunity
to obtain unprecedented accuracy for the pure pointlike QED
part of the low-energy lepton-scattering processes.

The presence of non-pointlike hadrons poses an additional
challenge. While the emission of a single photon from an
on-shell proton line can be described by two electromag-
netic form factors, Feynman diagrams with more compli-
cated topologies, e.g. involving hadronic intermediate states,
are more difficult to describe. Experimental analyses used to
include the TPE as evaluated in the article by Mo-Tsai [2] or
the later article by Maximon-Tjon [3]. That is the elastic TPE,
which has a proton in the intermediate state, as well as real
radiation (bremsstrahlung), both in the limit of soft photons.
The precision of modern scattering experiments – take for
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example the A1 [16] and initial-state-radiation (ISR) [17,18]
experiments at MAMI or the PRad [19] experiment at JLab
– required to go beyond that approximation and consider a
more complete treatment of TPE and real radiation [6,20].
Corrections beyond the soft-photon approximation are some-
times referred to as “hard TPE” and hard-photon radiation,
respectively [1]. In the following, we refer to corrections
from diagrams with exchange of two virtual photons, shown
in (8a), as virtualTPE, and to the interference of one-photon-
exchange (OPE) diagrams with a single bremsstrahlung pho-
ton radiated from the lepton and proton line, respectively,
shown in (8b), as real TPE.

At low energies, the TPE contributions cannot be com-
puted in perturbative QCD directly. They need to be mod-
eled or, preferably, evaluated without model dependence in
an effective-field theory framework [21–23] or through the
use of dispersion relations. The latter require further experi-
mental input, see [24–26] for a selection of recent data-driven
evaluations. Since the first works suggested an insufficiently
precise description of the hard TPE as the origin of the dis-
crepancy between form factor extractions from unpolarised
and polarisation-transfer measurements [27–30], a vast liter-
ature on how to obtain and improve virtual TPE contributions
appeared, see [31–34] for reviews focusing solely on virtual
TPE in lepton-proton scattering.

The main aim of this investigation is not to improve the
predictions for TPE as such but, rather, to critically assess
the impact of TPE corrections available in the literature, rel-
ative to other corrections to lepton-proton scattering. To this
end, we combine a simplified implementation of the TPE
corrections with state-of-the-art NNLO QED corrections.

We focus our application on the high-precision muon-
scattering experiment MUSE [35,36], which uses a beam
of electrons and muons of both charges (e+ and μ+ as
well as e− and μ−), with three different beam momenta1

pbeam = 115, 153, 210 MeV. Its aim is to compare extrac-
tions of the proton charge radius from electron and muon
scattering, respectively, obtained with the same experimen-
tal setup, and to experimentally determine TPE corrections
making use of both beam polarities. The MUSE kinemat-
ics is limited to the low momentum-transfer region (0.08
GeV2 for pbeam = 210 MeV), where the TPE corrections
are dominated by the elastic TPE, while the inelastic TPE
is smaller than the anticipated accuracy of the MUSE cross-
section measurements [38]. Therefore, as a reasonable first
approximation in the MUSE kinematics, we implement a
simple model for the elastic TPE contribution and neglect
the inelastic part.

1 Very recently, in [37], the beam momentum 153 MeV was changed to
161 MeV. In Fig. 2, we consider 153 MeV in order to compare to older
theory predictions for MUSE kinematics [38].

All considered corrections are implemented in the
McMule framework [10]. This goes beyond the NLO radia-
tive corrections from [6] applied in the recent MUSE analysis
of instrumental uncertainties [37]. In particular, we adapt the
recent NNLO computation for muon-electron scattering [14]
to obtain the NNLO QED corrections for lepton-proton scat-
tering for pointlike protons in a fully differential way. It is
the first time that these corrections (including three-photon
exchange contributions) are taken into account, and we assess
their relevance relative to variations in the treatment of TPE
corrections.

In Sect. 2 we will give a detailed description of the contri-
butions that are included in our calculation. This allows us to
present in Sect. 3 results for MUSE with pbeam = 210 MeV
and study the impact of NNLO QED corrections. Our conclu-
sions and an outlook towards further work will be presented
in Sect. 4.

2 Calculation

In order to maximally exploit the technical progress in the
computation of QED corrections, we take as the starting point
a pointlike interaction ie qp γ μ of the photon with the proton,
and we will call this the pure QED contribution. We introduce
the charge of the proton qp = 1 in units of e for bookkeep-
ing purposes. The non-pointlike structure of the proton will
be taken into account by additional contributions, denoted
by F × δμ. Again F has been introduced for bookkeeping
purposes. Thus, for the photon–proton interaction we write

ie

[
γ μF1(Q

2) + i

2M
σμνqνF2(Q

2)

]
=

q

F

= ie
[
qp γ μ + F δμ

] = +
q

δ

(1)

with the four-momentum of the photon q, the spacelike vir-
tuality of the photon q2 = −Q2 < 0, the Dirac and Pauli
form factors of the proton, F1(Q2) and F2(Q2), the proton
mass M , and our notation for the antisymmetric combination
of Dirac matrices σμν = i

2 (γ μγ ν − γ νγ μ). Note that for
real photons, the form factors are normalised through their
charge and anomalous magnetic moment κ: F1(0) = qp = 1
and F2(0) = κ . In what follows we will describe in detail
which contributions we include, up to and including NNLO.

Starting at LO we obtain the matrix element (squared)

M(0)
n (q2

� , F2) = ∣∣A(0)
n (q�, F)

∣∣2

= (2)
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by computing the tree-level amplitude of the 2 → 2 lepton-
proton process with the full photon-proton vertex, depicted as
grey blobs in accordance with (1). The subscript n indicates
the number of final-state particles, i.e. n = 2 for the process
considered in this paper. In the argument of the amplitude
A(0)

n we indicate that there is a single power of the coupling
of the photon to the lepton, where q� = ±1 is the charge
of the positron or electron in units of e, and that the full
photon-proton vertex (1) with arbitrary form factors F1 and
F2 is included. We suppress the dependence on the external
momenta but use the convention

�(p1) p(p2) → �(p3) p(p4) + {γi (ki )} (3)

with up to two additional photons in the final state and either
lepton polarity.

Thus, the unpolarised tree-level cross section is obtained
by integrating (2) over the two-body phase space d�n and
including the standard flux and spin average factors

dσ (0)(q2
� , F2) = 1

2s

1

4

∫
d�nM(0)

n (q2
� , F2)S(p3, p4) .

(4)

The differential nature of the computation is coded in the
measurement function S(p3, p4) that allows to include arbi-
trary cuts on the final states.

At NLO, virtual and real corrections contribute to the
cross section. This leads to ultraviolet (UV) and infrared
(IR) divergences. Both types of singularities are regularised
dimensionally. For the UV divergences, we use the on-shell
renormalisation scheme for the masses and the coupling. The
IR singularities cancel when combining real and virtual cor-
rections, as discussed in [1]. We perform the phase-space
integrations numerically, using the FKS� subtraction method
[39] to achieve this cancellation for arbitrary IR-safe observ-
ables.

The so-called leptonic corrections consist of Feynman dia-
grams with additional photons solely attached to the lepton
line. This is a gauge-invariant subset of the complete NLO
correction, and corresponds to the OPE approximation. In
the case of the electron, these corrections are expected to
dominate due to collinear emission. This results in large log-
arithms of the form log(m2

e/E
2) where the energy scale of

the process E is much larger than the electron mass me.
Representative diagrams for the leptonic NLO corrections
are

M(1)
n (q4

� , F2) = 2 Re
(A(1)

n (q3
� , F)A(0) ∗

n (q�, F)
)

⊃ (5a)

M(0)
n+1(q

4
� , F2) = ∣∣A(0)

n+1(q
2
� , F)

∣∣2

⊃ (5b)

The virtual corrections dσ
(1)
v (q4

� , F2) are obtained by inte-

gration of the one-loop matrix element M(1)
n (q4

� , F2) over
the two-body phase space, whereas for the real correc-
tions dσ

(1)
r (q4

� , F2) we have to integrate the matrix ele-

mentM(0)
n+1(q

4
� , F2) describing real radiation over the three-

body phase space d�n+1. All these calculations can be
performed with arbitrary form factors [2,3] using stan-
dard methods, and we obtain the leptonic NLO correc-
tions

dσ (1)(q4
� , F2) = dσ (1)

v (q4
� , F2) + dσ (1)

r (q4
� , F2) (6)

to the cross section.
In analogy to the leptonic corrections, the protonic cor-

rections include emission solely from the proton line. Tech-
nically speaking, they are also OPE contributions. Note that
we do not absorb the pure QED virtual corrections, i.e. the
vertex corrections, into the form factors, since they are IR
divergent. In general, we consider all QED reducible contri-
butions as independent from the form factors. As we will see,
in practice all this has very limited impact, since these cor-
rections are very small compared to the leptonic OPE, even
for � = μ. This is due to the lack of logarithmic enhance-
ments since collinear radiation only results in logarithms of
the form log(M2/E2) with M2 ≈ E2 for the energy scale
considered here. Thus, in a standard OPE approach, these
corrections are often neglected. In the following, we take
the protonic corrections into account in the pointlike proton
approximation. Again, we have virtual and real corrections

M(1)
n (q2

� , q4
p) = 2 Re

(A(1)
n (q�, q

3
p)A(0) ∗

n (q�, qp)
)

⊃ (7a)

M(0)
n+1(q

2
� , q4

p) = ∣∣A(0)
n+1(q�, q

2
p)

∣∣2

⊃ (7b)

where we only show a single diagram for illustrative pur-
poses.

The NLO corrections that involve additional photon cou-
plings to both, the lepton and proton line, we call mixed cor-
rections or simply TPE. As a first approximation to the TPE
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at NLO, we consider the elastic contribution which is due to
an intermediate proton. For the virtual TPE correction this
results in box (and crossed box) diagrams whereas for the
real TPE corrections the intermediate proton is between the
exchange photon and the real photon. Concretely, we take
into account

M(1)
n (q3

� , F3) = 2 Re
(A(1)

n (q2
� , F2)A(0) ∗

n (q�, F)
)

⊃ (8a)

M(0)
n+1(q

3
� , F3) = 2 Re

(A(0)
n+1(q�, F

2)A(0) ∗
n+1 (q2

� , F)
)

⊃ (8b)

We include the real TPE contribution dσ
(1)
r (q3

� , F3) by

integrating M(0)
n+1(q

3
� , F3) over the three-body phase space

d�n+1. Combining this with the corresponding virtual TPE
correction dσ

(1)
v (q3

� , F3) leads to an IR finite result for any
IR safe observable.

Besides the elastic TPE with a proton intermediate state,
there is the so-called inelastic TPE contribution with inelastic
intermediate states

virtual

real (9)

The latter are denoted by the oval blobs in the above Feyn-
man diagrams, and may contain anything: pions, resonances
like the 	(1232), etc. In the low-Q2 region, relevant for
the MUSE experiment, the elastic TPE dominates, while the
inelastic TPE can be neglected. Therefore, the inelastic TPE
is presently not included in McMule. Again, we leave this
for a future update.

In this work, the virtual TPE has been implemented
through a simple hadronic model calculation of the box and
crossed-box diagrams in (8a), assuming on-shell proton form
factors. The same approach has been used for instance in
[28,49] for electron and muon scattering, respectively. In
[50], the hadronic model calculation has been compared to a
dispersive evaluation with one subtraction function. The lat-
ter involves an s-channel cut through the box diagram, thus,
only needs input from on-shell form factors and does not
require off-shell form factors, as the box calculation would
in principle. Both approaches agree with 5 × 10−4 relative
accuracy for the kinematics of muon scattering in the MUSE

experiment [50], and the same quality of the approximation
can be assumed for electron scattering at MUSE. Thus, this
model dependence in our approach can be safely neglected.
For the proton electric and magnetic Sachs form factors

GE (Q2) = F1(Q
2) − Q2

4 M2 F2(Q
2), (10a)

GM (Q2) = F1(Q
2) + F2(Q

2), (10b)

we use a dipole ansatz

GE (Q2) = GD(Q2) = GM (Q2)

1 + κ
, with

GD(Q2) =
(


2


2 + Q2

)2

. (10c)

Note that in the limit 
 → ∞ the pure (pointlike) QED ver-
tex is recovered. Of course, describing both the normalised
electric and magnetic Sachs form factor through one sin-
gle parameter 
 is a rather naive ansatz. Furthermore, the
simple dipole form can only ever be a rough approximation
to any form factor. Nevertheless, the standard dipole with

2 = 0.71 GeV2 is widely used as a reasonable first approx-
imation to the proton form factors, and serves well our pur-
pose to examine the relative importance of TPE and NNLO
QED corrections. While we leave the implementation of the
elastic TPE correction with input from modern form-factor
parametrisations to a future version of McMule, we want
to illustrate the impact of the form factors and the uncertain-
ties in their description by considering various values for 
.
To motivate our choice, we consider the slopes of the Sachs
form factors at Q2 = 0, which are related to the charge and
magnetisation radii of the proton

RE,M =
√

− 6

GE,M (0)

dGE,M (Q2)

dQ2

∣∣∣∣
Q2=0

(11)

shown in Fig. 1. Besides the standard dipole, we use 
2 =
0.86 GeV2 reproducing the small RM from [40], 
2 = 0.66
GeV2 reproducing RE as extracted with unprecedented preci-
sion from the Lamb shift in muonic hydrogen [43], and 
2 =
0.60 GeV2 reproducing the large RE from [41]. The resulting
impact on the virtual TPE correction, defined usually as

δ2γ (IR) = M(1)
n (q3

� , F3)
∣∣
IR

M(0)
n (q2

� , F2)
, (12)

is shown in Fig. 2 for electron and muon scattering. The “IR”
label indicates that the omission of M(0)

n+1(q
3
� , F3) in (12)

requires an unphysical subtraction of the IR singularity in
M(1)

n (q3
� , F3). For the purpose of Fig. 2 we have used the

Maximon-Tjon subtraction [1,3].
Going towards larger values of Q2, excited intermediate

states, e.g., resonances [26], eventually do lead to sizeable
contributions. In [38], the inelastic TPE correction has been
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Fig. 1 Comparison of extractions of the proton electric and magnetic
radii, RE and RM , from different parametrisations of the proton Sachs
form factors [16,40–42], including the standard dipole with 
2 = 0.71
GeV2, to the extraction from the muonic-hydrogen Lamb shift [43], and
the CODATA recommended values for RE , before (CODATA ’14 [44])
and after (CODATA ’18 [45]) inclusion of the data from muonic hydro-
gen. Note that the displayed Bernauer results [16] are including hard
TPE corrections from [46] (solid) and [32,47] (dashed), respectively.
On the additional axes, we show which value of 
2

E,M would reproduce
the radii if a dipole ansatz was assumed for the form factors

estimated through a dispersive approach for near-forward
kinematics, relating it to forward doubly-virtual Compton
scattering amplitudes, which are in turn reconstructed dis-
persively with empirical input for the unpolarised proton

structure functions. In their estimate, the inelastic TPE con-
tribution, δ2γ ∼ 5 × 10−4, is smaller than the anticipated
1 % accuracy of the cross-section measurements at MUSE.
Coincidentally, for ep scattering, our evaluation of the elas-
tic TPE with a dipole parameter of 
2 = 0.86 GeV2 is very
close to their prediction for the total TPE [38]. This can be
seen from Fig. 2, where we compare our spread of results
approximating the elastic TPE to the dispersive evaluation
(solid cyan line) [38] and an empirical extraction (solid vio-
let line and error band) [16] of the total TPE. Note that the
elastic TPE included in [38] agrees with our result for the
standard dipole (short-dashed blue line). The uncertainty on
their inelastic TPE is small on the scale of the total TPE, and
thus, omitted from the figure.

All contributions discussed so far were NLO. Moving
towards NNLO, we start again with the leptonic or OPE cor-
rections. This gauge invariant subset of NNLO corrections
has been computed [9,10] for any choice of form factors. It
consists of double-virtual, real-virtual, and double-real cor-
rections

dσ (2)(q6
� , F2) = dσ (2)

vv (q6
� , F2) + dσ (2)

rv (q6
� , F2)

+ dσ (2)
rr (q6

� , F2) (13)

which are obtained by integrating the two-loop matrix ele-
ment M(2)

n (q6
� , F2) over d�n , the one-loop matrix element

M(1)
n+1(q

6
� , F2) over d�n+1, and the tree-level matrix ele-

ment M(0)
n+2(q

6
� , F2) over d�n+2, respectively. For any IR-

safe observable, the IR singularities of the individual parts in
(13) cancel in the sum. Representative Feynman diagrams of
the various matrix elements are

M(2)
n (q6

� , F2) = 2 Re
(A(2)

n (q5
� , F)A(0) ∗

n (q�, F)
) ⊃

+∣∣A(1)
n (q3

� , F)
∣∣2 ⊃ (14a)

M(1)
n+1(q

6
� , F2) = 2 Re

(A(1)
n+1(q

4
� , F)A(0) ∗

n+1 (q2
� , F)

) ⊃ (14b)

M(0)
n+2(q

6
� , F2) = ∣∣A(0)

n+2(q
3
� , F)

∣∣2 ⊃ . (14c)

123



  253 Page 6 of 17 Eur. Phys. J. A           (2023) 59:253 

Fig. 2 Comparison of virtual TPE corrections, δ2γ , to e− p (left column) and μ− p (right column) scattering for three different beam momenta
envisaged by the MUSE experiment [48]: pbeam = 115, 153, 210 MeV. The soft singularities are subtracted using the Maximon-Tjon prescription
[3]. Shown are the elastic TPE from our box model calculation with proton dipole form factors and different values of 
2 = 0.60, 0.66, 0.71 and
0.86 GeV2 (orange dotted, red dot-dashed, blue short-dashed and pink long-dashed lines), compared to the theoretical prediction for the total TPE
from [38] (solid cyan line), and the empirical extraction of the total TPE from [16] (solid violet line with error band)

The one-loop amplitude squared, cf. the second line in (14a),
is included in the two-loop matrix element. We note that some
NLO diagrams for the process of �p → �pγ , corresponding
to an IR-finite subset of the �p → �p process at NNLO,
have been previously included in [20] in approximate ways.
The full set of leptonic NNLO corrections depicted in (14a),
(14b), and (14c) has been computed in [9] with a slicing
approach and later with the McMule framework in [10].
The two results disagree substantially and a corresponding
discussion can be found in [10].

The leptonic corrections are expected to be dominant, at
least for the case � = e, since they contain hard collinear
emission from the electron line. This leads to large loga-
rithms. As we will see, the size of these corrections depends

crucially on the precise definition of the observable. More
concretely, the way additional photon radiation is treated in
the experiment will have a decisive impact. Thus, these cor-
rections have to be under control for empirical extractions of
form factors and TPE effects.

The leptonic corrections are technically the most simple
NNLO corrections. Going beyond OPE, we have to consider
one-loop pentagon diagrams (for the real-virtual corrections)
and, more challenging, a set of topologically non-trivial two-
loop diagrams, including (crossed) double-box diagrams. In
the language of lepton-proton scattering, they correspond
to three-photon exchange contributions. With current tech-
niques, it is not possible to do such a computation including
form factors. Hence, for all NNLO corrections beyond OPE
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we use the approximation of a pointlike proton 
 → ∞. In
this case, the NNLO corrections to lepton-proton scattering
can be obtained from those of muon-electron scattering, with
adapted masses. The latter have been computed [14,51] using
the two-loop integrals of [52], as well as OpenLoops [53]
and Package-X [54] for the one-loop amplitudes. They can
be split into gauge-invariant parts consisting of terms with a
fixed power of qn� and qmp with n + m = 8. As an example,

we illustrate the virtual contributions to dσ (2)(q4
� , q4

p) which
requires the two-loop matrix element

M(2)
n (q4

� , q4
p) = 2 Re

(A(2)
n (q3

� , q3
p)A(0) ∗

n (q�, qp)
) ⊃

+ ∣∣A(1)
n (q2

� , q2
p)

∣∣2 ⊃

+ 2 Re
(A(1)

n (q3
� , qp)A(1) ∗

n (q�, q
3
p)

) ⊃ (15a)

Of course, real-virtual and double-real corrections have
to be considered as well. Representative examples for
dσ

(2)
rv (q5

� , q3
p) and dσ

(2)
rr (q5

� , q3
p) are

M(1)
n+1(q

5
� , q3

p) = 2 Re
(A(1)

n+1(q
3
� , q2

p)A(0) ∗
n+1 (q2

� , qp)
)

⊃ (16a)

M(0)
n+2(q

5
� , q3

p) = 2 Re
(A(0)

n+2(q
3
� , qp)A(0) ∗

n+1 (q2
� , q2

p)
)

⊃ (16b)

All contributions considered so far are collectively called
photonic corrections. In addition, there are vacuum polarisa-
tion contributions. We include electron, muon, tau loops in
the vacuum polarisation �, and collectively refer to them as
fermionic corrections. Note that we also include hadronic
contributions in �, however, they are about a factor 100
smaller than the fermionic contributions. Vacuum polariza-
tion starts to contribute at NLO through virtual effects. At
NNLO, there are virtual and real fermionic corrections to be
included. In analogy to the other corrections, we use a form
factor for the OPE contributions and a pointlike proton inter-
action for TPE. Sample diagrams for the virtual corrections

are

M(1)
n (q2

� ,�, F2) = 2 Re
(A(1)

n (q�,�, F)A(0) ∗
n (q�, F)

)

⊃ (17a)

M(2)
n (q4

� ,�, F2) = 2 Re
(A(2)

n (q3
� ,�, F)A(0) ∗

n (q�, F)
)

⊃ (17b)

M(2)
n (q3

� ,�, q3
p) = 2 Re

(A(2)
n (q2

� ,�, q2
p)A(0) ∗

n (q�, qp)
)

⊃ (17c)

There are also contributions with either two one-loop inser-
tions of � or a single insertion of a two-loop vacuum polar-
isation. They contribute to virtual corrections only and we
denote them collectively by dσ (2)(q2

� ,�2, F2). In the case
of leptons, the analytic form of the two-loop vacuum polar-
isation from [55] is used, whereas for hadronic loops, the
Fortran library alphaQED [56] is employed. We do not
include real corrections with an additional e+ e− pair in the
final state [57]. This is a measurably different process. How-
ever, depending on the details of the experimental analysis,
this process can contribute to lepton-proton cross sections at
NNLO.

To summarise, our results for the NNLO cross section

dσ2 = dσ (0) + dσ (1) + dσ (2) (18)
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include

dσ0 = dσ (0)(q2
� , F2), (19a)

dσ (1) = dσ (1)(q4
� , F2) + dσ (1)(q3

� , F3)

+ dσ (1)(q2
� , q4

p) + dσ (1)(q2
� ,�, F2), (19b)

dσ (2) = dσ (2)(q6
� , F2)

+
( 5∑

j=3

dσ (2)(q j
� , q8− j

p )

)
+ dσ (2)(q2

� , q6
p)

+
(
dσ (2)(q4

� ,�, F2) + dσ (2)(q2
� ,�2, F2)

)

+ dσ (2)(q3
� ,�, q3

p) + dσ (2)(q2
� ,�, q4

p), (19c)

where all parts are individually gauge independent. All con-
tributions proportional to F2 can easily be computed with
arbitrary form factors. The termdσ (1)(q3

� , F3) has been com-
puted using a dipole ansatz for the electromagnetic form fac-
tors. For the remaining terms we use the pointlike proton
approximation.

In Sect. 3 we will present results for different values of the
dipole parameter 
 in (10c), including 
 = ∞ for pointlike
protons. In order to indicate the dependence on 
, we will
use the compact notation

dσ

0 = dσ (0)(q2

� , F(
)2), (20a)

dσ (1)
 = dσ
(1)

� + dσ (1)


x + dσ (1)∞
p + dσ

(1)

� , (20b)

dσ (2)
 = dσ
(2)

� + dσ (2)∞

x + dσ (2)∞
p + dσ

(2)

��

+ dσ
(2)∞
x� + dσ

(2)∞
p� , (20c)

where the terms in (20) are in one-to-one correspondence
with those of (19). The labels � ∈ {e, μ}, p, and x stand
for leptonic (i.e. electronic or muonic), protonic, and mixed
corrections. The terms ∼ q2

� �2F2 have been absorbed into

dσ
(2)

�� as a matter of convention. If the proton is treated

pointlike, we set 
 = ∞ in the notation. Otherwise, we use
the label 
 ∈ {60, 71, 86} to indicate the value of the dipole
parameter that has been used, where e.g. the label 
 = 60
corresponds to 
2 = 0.60 GeV2.

3 Results and discussion

This section presents results for lepton-proton scattering, tai-
lored to the characteristics of the MUSE experiment [35,36].
Particular emphasis is given to the impact of NNLO pure
QED corrections compared to hadronic effects at NLO,
focusing mainly on the elastic TPE discussed in Sect. 2. The
code employed for this study is publicly available at https://
gitlab.com/mule-tools/mcmule and the whole set of results
can be found in the relevant directory of the McMule user

Table 1 Kinematical scenarios analysed in the McMule prediction

20◦ < θ� < 100◦ | 
p3| > pmin Eγ < 0.4 pbeam

S0 � �
S1 � � �

library https://mule-tools.gitlab.io/user-library/ along with
user, menu and configuration files, and the Python code that
generates the plots in the paper [58]. The production runs
employed version v0.5.0 of the McMule public release.

The kinematics of the process is defined by the momenta
in (3) together with the lepton and the proton mass,m� and M .
Both polarities of the lepton are considered. For the purpose
of illustration, we consider an incoming lepton of momentum

pbeam = | 
p1| = 210 MeV (21)

scattering off a proton at rest. This is consistent with one
of the MUSE setups, and corresponds to a centre-of-mass
energy of

√
s ≈ 1.2 GeV. The experimental setup defines a

window for the lepton scattering angle, 20◦ < θ� < 100◦,
and for the lepton final-state momentum

| 
p3| > 15 MeV ≡ pmin . (22)

All the results use the input parameters [59]

α = 1/137.035999084 , me = 0.510998950 MeV ,

mμ = 105.658375 MeV , M = 938.2720813 MeV .

The most recent version alphaQEDc19 of the Fortran
library alphaQED is used for the evaluation of diagrams
with hadronic loop insertions.

In order to measure elastic scattering, kinematical cuts
have to be applied to suppress radiative events. In the case of
the MUSE experiment this is done by means of a forward-
angle calorimeter [37]. In the following, results are presented
for two different scenarios,S0 andS1, depending on whether
an additional inelasticity cut is enforced. In our simulation,
the energy of photon(s) emitted in the lab frame within a
100 mrad angle is cumulated into Eγ . In scenario S1, if
Eγ > 0.4 pbeam the corresponding event is removed from
the analysis. The kinematical details discussed above and
used in our scenarios are summarised in Table 1.

Figure 3 illustrates the impact of this forward-angle inelas-
ticity cut on Eγ . It depicts the sum of the NLO and NNLO
corrections normalised to the Born cross section as a function
of the leptonic momentum transfer Q2

� = −(p1 − p3)
2 as

well as its protonic counterpart Q2
p = −(p2 − p4)

2. Results
for both scenarios S0 and S1 are shown. In the presence
of radiation we have Q2

� 
= Q2
p and the deviation of the

two curves can be taken as a measure of inelastic effects.
In the case of μp scattering hard radiation is not collinearly
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Fig. 3 Complete NLO+NNLO corrections for ep (left panel) and μp (right panel) scattering, normalised to the Born cross sections. Shown are
both kinematic scenarios S0 and S1. Since corrections due to real-photon emissions are included, the distributions differ whether they are plotted
as functions of Q2

� or Q2
p

enhanced due to the larger lepton mass. For ep scattering,
on the other hand, sizable deviations can be observed. We
therefore restrict the discussion to this more interesting case.

For small momentum transfer, the S1 distributions w.r.t.
Q2

e and Q2
p are almost identical. Hence, the Eγ cut is able

to remove most hard photon radiation in this region. This
is not the case for larger momentum transfer where the Q2

e
and Q2

p curves start to deviate. This behaviour can be under-
stood as follows. Small momentum transfer corresponds to
forward scattering of the lepton. In this case both initial-state
as well as final-state collinear radiation is emitted in forward
direction and therefore removed by the Eγ cut. For larger
Q2, on the other hand, final-state collinear radiation is not
forwardly directed and is thus not vetoed. Nevertheless, the
inelasticity cut still removes initial-state collinear radiation.
However, this effect seems to be very small since the S0
and S1 scenarios approach each other in this region. Thus,
final-state radiation dominates the inelastic effects for larger
momentum transfer irrespective of the cut on Eγ .

The order-by-order contributions, σ (i), to the LO, NLO,
and NNLO integrated cross section are shown in Tables 2
and 3 for ep and μp scattering, respectively. The various con-
tributions are denoted as in (20). The results are presented
for both kinematical scenarios and for different values of 


entering the dipole ansatz of the proton form factors (10c).
In particular, 
2 ∈ {0.60, 0.71, 0.86} GeV2, while the label

∞ stands for a pure pointlike QED photon-proton ver-
tex. The NNLO corrections have been evaluated only for the
point-like proton (
∞) and the standard dipole form factors
(
71). We reiterate that inelastic contributions to TPE are
not taken into account in the calculation.

In order to better grasp the impact of different contri-
butions to ep and μp scattering, Figs. 4 and 5 show the
same corrections presented in Tables 2 and 3 as bar plots,
for both kinematical scenarios. For each contribution, pho-

tonic and fermionic corrections are plotted with a different
colour. Each contribution with a superscript “71” indicates
the corresponding pure QED contribution with the additional
inclusion of proton from factors, using the dipole ansatz in
(10c) with 
2 = 0.71 GeV2. For the LO and NLO contri-
butions, a black band represents the variation obtained with
0.60 GeV2 < 
2 < 0.86 GeV2. When a black band refers to
a sum of photonic and fermionic corrections, this is plotted
as the square root of the quadrature sum of the two contri-
butions. In the case of ep scattering, the black bands for the
NLO electronic correction are particularly small compared
to the scale of the plot, for both S0 and S1.

The discussion about ep and μp scattering somewhat dif-
fers because of the different lepton mass. We start our analysis
with the former. As touched upon in Sect. 2, collinear pho-
ton emission introduces logarithms of the form log(m2

i /E
2)

where mi ∈ {me, M} depending on whether the photon is
emitted from the electron or the proton line. In the former
case, the logarithm is large and the corresponding contri-
bution enhanced. This explains the hierarchy between the
different photonic NLO contributions in Table 2: the elec-
tronic OPE corrections are dominant compared to TPE, and
even more compared to OPE protonic corrections. If a cut
that limits hard forward-angle radiation (S1) is applied, the
collinear enhancement is reduced and the hierarchy is less
pronounced.

In order to illustrate the relative importance of various
corrections in e− p scattering w.r.t. the TPE, we will use

2 = 0.71 GeV2 for the reference form factor and σ

(1)71
x

as normalisation. Electronic and fermionic NLO corrections
by far outweigh the TPE,

{σ (1)71
e , σ

(1)71
� , |σ (1)

p |}
σ

(1)71
x

≈
{

{40, 3.5, 0.01} [S0]
{6, 3.5, 0.01} [S1] , (23)
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Table 2 Integrated cross sections for ep scattering, for both S0 and
S1 scenarios, at LO, NLO, and NNLO. All digits shown are sig-
nificant. 
∞ denotes pure QED contributions with a pointlike pro-
ton, {
60, 
71, 
86} stand for proton finite-size corrections with

proton form factors modeled through a dipole ansatz and 
2 set to
{0.60, 0.71, 0.86} GeV2, respectively. When applicable, the different
contributions with positive and negative electrons are shown

σ/µb [S0] σ/µb [S1]

∞ 
60 
71 
86 
∞ 
60 
71 
86

σ0 40.6564 38.5302 39.0482 39.5432 40.6564 38.5302 39.0482 39.5432

σ
(1)
e 6.3603 6.3721 6.3705 6.3687 0.9438 0.9735 0.9672 0.9610

σ
(1)
x

{+
− −0.1931 −0.1526 −0.1609 −0.1696 −0.1924 −0.1520 −0.1603 −0.1689

0.1931 0.1526 0.1609 0.1696 0.1924 0.1520 0.1603 0.1689

σ
(1)
p −0.0020 −0.0020

σ
(1)
� 0.5878 0.5554 0.5634 0.5711 0.5878 0.5554 0.5634 0.5711

σ
(2)
e −0.0134 −0.0080 −0.0102 −0.0049

σ
(1)
x

{+
− −0.0240 −0.0009

0.0279 0.0049

σ
(2)
p −0.0000 −0.0000

σ
(2)
e� 0.0540 0.0542 0.0094 0.0098

σ
(1)
x

{+
− −0.0046 −0.0046

0.0046 −0.0046

σ
(2)
p� −0.0001 −0.0001

Table 3 Same as Table 2 but for μp scattering

σ/µb [S0] σ/µb [S1]

∞ 
60 
71 
86 
∞ 
60 
71 
86

σ0 52.1775 49.0046 49.6678 50.3161 52.1775 49.0046 49.6678 50.3161

σ
(1)
μ −0.0710 −0.0613 −0.0631 −0.0649 −0.0713 −0.0616 −0.0634 −0.0652

σ
(1)
x

{+
− −0.2196 −0.1594 −0.1703 −0.1817 −0.2196 −0.1594 −0.1703 −0.1817

0.2196 0.1594 0.1703 0.1817 0.2196 0.1594 0.1703 0.1817

σ
(1)
p −0.0034 −0.0034

σ
(1)
� 0.7557 0.7070 0.7172 0.7273 0.7557 0.7070 0.7172 0.7273

σ
(2)
μ −0.0000 −0.0001 −0.0000 −0.0001

σ
(2)
x

{+
− 0.0010 0.0010

0.0037 0.0037

σ
(2)
p −0.0000 −0.0000

σ
(2)
μ� 0.0079 0.0076 0.0079 0.0076

σ
(2)
x�

{+
− −0.0057 −0.0057

0.0057 0.0057

σ
(2)
p� −0.0001 −0.0001

even in the kinematical scenario S1 in which the electronic
contribution is reduced by almost a factor 7 due to the cut
on Eγ . Protonic corrections, on the other hand, are much

smaller, justifying their neglect or approximate (pointlike
proton) inclusion.
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Fig. 4 Integrated cross sections for ep scattering, for both S0 (left panel) and S1 (right panel), at LO, NLO, and NNLO. Yellow bars indicate
contributions with fermionic loop insertions, blue bars indicate photonic contributions. The fermionic contributions σ

(1)

� , σ (2)


e� , σ (2)∞
x� , and σ

(2)∞
p�

are individually combined with σ
(1)

e , σ

(2)

e , σ

(2)∞
x , and σ

(2)∞
p , respectively. 
2 = 0.71 GeV2 is taken as the reference value for the dipole

parameter. Black bands denote variations due to 
2 ∈ [0.60, 0.86] GeV2. Note that the black bands should not be interpreted as the uncertainty
estimate of our theory prediction. They merely illustrate the impact of the form factors and their possible uncertainties, assuming our naive dipole
ansatz. Further uncertainties, e.g., due to higher-order corrections, model dependence or missing inelastic TPE, are not shown

Fig. 5 Same as Fig. 4 but for μp scattering

The impact of form factor insertions at LO and NLO can
be quantified, for both kinematical scenarios, as

|σ∞
0 − σ 71

0 |
σ

(1)71
x

≈ 10 ,

{|σ (1)∞
e − σ

(1)71
e |, |σ (1)∞

x − σ
(1)71
x |, |σ (1)∞

� − σ
(1)71
� |}

σ
(1)71
x

≈
{

{0.06, 0.20, 0.15} [S0]
{0.15, 0.20, 0.15} [S1] .

(24)

The first relation simply states that the impact of the form
factor at tree level is clearly dominating any TPE effect, as

expected. Comparing the other relations in (24) we note that
the form factor insertion turns out to be more relevant for
the mixed and fermionic corrections and less relevant for the
electronic OPE correction. With the same normalisation, the
impact of varying 
 at LO and NLO can be quantified as

|σ 86
0 − σ 60

0 |
σ

(1)71
x

≈ 6 ,

{|σ (1)86
e − σ

(1)60
e |, |σ (1)86

x − σ
(1)60
x |, |σ (1)86

� − σ
(1)60
� |}

σ
(1)71
x

≈
{

{0.02, 0.11, 0.10} [S0]
{0.08, 0.11, 0.10} [S1] .

(25)
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Not surprisingly, variations in 
 have the largest impact on
the LO result. At NLO, the effect on the electronic, mixed,
and fermionic corrections is roughly the same, and still more
than half the size of the effect of the form factor inclusion
itself, shown in (24). Thus, in the context of ep scattering, a
calculation of NLO corrections necessarily requires a precise
inclusion of the proton form factors.

Comparing the NNLO pure QED corrections (involving
also pointlike three-photon exchanges) to the TPE effects we
find

{|σ (2)∞
e |, σ (2)∞

x , σ
(2)∞
e� , σ

(2)∞
x� }

σ
(1)71
x

≈
{

{0.08, 0.17, 0.34, 0.03} [S0]
{0.06, 0.03, 0.06, 0.03} [S1] .

(26)

Their relative size is of the same order (if not bigger) as the
impact of adding form factors to the NLO TPE corrections,
(24), or considering uncertainties of the TPE implementation,
(25). This is particularly the case if forward energetic photons
are not restricted. Hence, a detailed effort to improve the
description of TPE contributions needs to be combined with
NNLO QED corrections.

The case of μp scattering behaves differently in some
respects. The difference between muon and proton mass is
much smaller than the difference between electron and proton
mass. This is why we do not observe any collinear enhance-
ments, and the NLO muonic corrections are smaller than the
electronic corrections in (23),

{|σ (1)71
μ |, σ (1)71

� , |σ (1)
p |}

σ
(1)71
x

≈ {0.4, 4.2, 0.02}. (27)

Again, the protonic corrections are small enough to justify
their approximate (pointlike proton) inclusion. Here and in
the following, we only discuss the scenario S0, because the
cut on energetic (forward) photons has a marginal effect only.

Considering the same quantities as for e− p scattering,
(24), but now for μ− p scattering, again normalising by the
TPE corrections σ

(1)71
x , we find

|σ∞
0 − σ 71

0 |
σ

(1)71
x

≈ 15 ,

{|σ (1)∞
μ − σ

(1)71
μ |, |σ (1)∞

x − σ
(1)71
x |, |σ (1)∞

� − σ
(1)71
� |}

σ
(1)71
x

≈ {0.05, 0.30, 0.20} . (28)

Thus, the impact of adding the form factor is slightly larger
in the μp case. Proceeding in analogy with the ep case, we
next consider the impact of varying 
 for μp

|σ 86
0 − σ 60

0 |
σ

(1)71
x

≈ 8,

{|σ (1)86
μ − σ

(1)60
μ |, |σ (1)86

x − σ
(1)60
x |, |σ (1)86

� − σ
(1)60
� |}

σ
(1)71
x

≈ {0.02, 0.13, 0.12} (29)

and note that the results are similar as in (25). Finally, com-
paring TPE to pure NNLO QED, we get

{|σ (2)∞
μ |, σ (2)∞

x , σ
(2)∞
μ� , σ

(2)∞
x� }

σ
(1)71
x

≈ {0.00, 0.02, 0.05, 0.03} .

(30)

Here we see a clear difference between (26) and (30). As
expected, higher-order QED radiative corrections are less
relevant for μp scattering. The impact of variation in the TPE
evaluation is larger than the pure NNLO QED corrections.
From this perspective, it is thus advantageous to study TPE
in μp scattering. However, the pure NNLO QED corrections
add up to 10% of the TPE. Therefore, a precision study still
benefits from inclusion of state-of-the-art QED corrections.

We complement our discussion with results at differential
level, considering differential distributions w.r.t. the lepton
scattering angle. Figures 6 and 7 present such distributions
for both kinematical scenarios, for ep and μp scattering,
respectively. In each plot, pure NLO leptonic and fermionic
(yellow curve) as well as mixed corrections (green curve) are
compared to the difference of LO effects with and without
inclusion of the proton form factors (red curve). Furthermore,
pure NNLO QED corrections (blue curves) are compared to
the difference of NLO corrections with and without inclusion
of the proton form factors (pink curve). Thus, the impact of
the proton form factor inclusion at LO and NLO can be con-
trasted at differential level to NLO and NNLO pointlike cor-
rections, respectively. The statements previously made for
the integrated cross section are confirmed at the differential
level. In the case of ep scattering, NLO pure QED corrections
outweigh the effect of the form factor inclusion at LO, and
NNLO pure QED corrections are comparable to the impact
of the form factor inclusion in the NLO TPE correction, par-
ticularly for S0. The impact of pure QED corrections on μp
scattering, which can be read from the same set of curves, is
smaller than in the ep case but still not negligible.

The cross-section difference between �− p and �+ p allows
to cancel radiative contributions with an even power of the
formal charge q�. Thus, up to and including NNLO, this
leaves only the σ

(1)
x and σ

(2)
x� contributions, and a subset of

the σ
(2)
x contribution. Figures 8 and 9 show the latter in both

kinematical scenarios for ep and μp scattering, respectively.
One can see again that, in the case of S1 for ep scattering
and in general for μp scattering, NNLO corrections are more
suppressed than in S0 for ep. Nevertheless, when extracting
the TPE effect empirically from the cross-section difference
measured at MUSE, i.e. in scenario S1 for ep or μp scatter-
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Fig. 6 Differential cross section for ep scattering w.r.t. with respect to the electron scattering angle, for S0 (left panel) and S1 (right panel). The
cross section is split into different contributions at LO (gray), NLO (yellow and green) and NNLO (dashed cyan, dotted dark cyan and dark blue).
The impact of the proton finite size on the OPE at LO is shown in red, and the impact on the elastic TPE at NLO is shown in pink. Some contributions
are presented with their absolute value as the scale is logarithmic

Fig. 7 Same as Fig. 6 but for μp scattering
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Fig. 8 Difference between the θe differential cross sections for e− p and e+ p scattering, for S0 (left panel) and S1 (right panel). The corrections to
the cross section are split into different contributions at NLO (blue) and NNLO (yellow). The only non-zero corrections are those with odd powers
of the formal charge q�

Fig. 9 Same as Fig. 8 but for μp scattering

ing, it is important to take higher-order radiative corrections
into account. In both cases, NNLO contributions will lead to
a 10% correction on the extraction, thus, cannot be neglected.

4 Conclusions and outlook

We have presented an update of the McMule framework for
the process of lepton-proton scattering [10] with inclusion
of additional proton-structure effects from elastic TPE, and
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complete pointlike QED corrections at NNLO, with lepton-
mass effects. In Sect. 2, we have given a detailed descrip-
tion of the contributions that are included in the latest ver-
sion of McMule. Our notation for individual contributions
has been introduced in (18)–(20). In Sect. 3, we have stud-
ied the impact of higher-order QED radiative corrections on
the unpolarised cross section for lepton-proton scattering at
MUSE, focusing on one particular choice of beam momen-
tum (pbeam = 210 MeV). The availability of both electrons
and muons, with both polarities, is a remarkable advantage
for the MUSE experiment, as it allows to analyse a diversi-
fied phenomenology and to keep under control QED radiative
corrections, if needed. This is achieved either with physical
cuts on hard forward photons or by using muons, which are
less inclined to irradiate.

Hadronic corrections are usually known less precisely
than pure QED corrections (with a pointlike proton). In this
work, our main aim has been to assess the relative size
of NNLO pure QED corrections, as compared to the LO
and NLO corrections with inclusion of the proton form fac-
tors and their uncertainties. A particular focus has been on
TPE effects, referred to also as the NLO mixed corrections.
Since the MUSE kinematics is limited to the low momentum-
transfer region (Q2 < 0.08 GeV2), the inelastic TPE is small
enough to be neglected in view of the anticipated 1% accu-
racy of the cross section measurement. Therefore, only the
elastic TPE has been implemented through a simple hadronic
model assuming on-shell proton form factors described by
a dipole ansatz (10). The dipole parameter (10c) has been
varied around the standard dipole 
2 = 0.71 GeV2 within a
broad range 0.60 GeV2 < 
2 < 0.86 GeV2 to illustrate the
impact of form factors uncertainties.

We conclude that while it is sufficient to evaluate the pro-
tonic NLO corrections in pure QED with a pointlike pro-
ton, all other NLO corrections, in particular the mixed and
fermionic, necessarily require a precise inclusion of the pro-
ton form factors. Furthermore, we haven shown that NNLO
pure QED corrections can be almost as sizeable as the NLO
TPE corrections. Even for ep scattering with cuts on hard
forward photon emission (scenario S1), see (26), or for μp
scattering, see (30), where higher-order radiative corrections
are more suppressed, NNLO QED corrections should always
be included together with an improved description of TPE
effects. Equivalently, NNLO pure QED corrections need to
be included when extracting the TPE effect empirically to
better than 10% accuracy from the cross-section difference
between �− p and �+ p scattering.

The same analysis can be readily repeated within the
McMule framework for different kinematical scenarios or
other observables, and also broadened to cover further exper-
iments with different Q2 ranges. To this end, the implemen-
tation of the elastic TPE correction with input from mod-
ern form-factor parametrisations, and the implementation of

inelastic TPE corrections, are planned for a future version of
McMule.
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