69 research outputs found
The number of subsets of integers with no -term arithmetic progression
Addressing a question of Cameron and Erd\Ho s, we show that, for infinitely
many values of , the number of subsets of that do not
contain a -term arithmetic progression is at most , where
is the maximum cardinality of a subset of without
a -term arithmetic progression. This bound is optimal up to a constant
factor in the exponent. For all values of , we prove a weaker bound, which
is nevertheless sufficient to transfer the current best upper bound on
to the sparse random setting. To achieve these bounds, we establish a new
supersaturation result, which roughly states that sets of size
contain superlinearly many -term arithmetic progressions.
For integers and , Erd\Ho s asked whether there is a set of integers
with no -term arithmetic progression, but such that any -coloring
of yields a monochromatic -term arithmetic progression. Ne\v{s}et\v{r}il
and R\"odl, and independently Spencer, answered this question affirmatively. We
show the following density version: for every and , there
exists a reasonably dense subset of primes with no -term arithmetic
progression, yet every of size contains a
-term arithmetic progression.
Our proof uses the hypergraph container method, which has proven to be a very
powerful tool in extremal combinatorics. The idea behind the container method
is to have a small certificate set to describe a large independent set. We give
two further applications in the appendix using this idea.Comment: To appear in International Mathematics Research Notices. This is a
longer version than the journal version, containing two additional minor
applications of the container metho
On two problems in Ramsey-Tur\'an theory
Alon, Balogh, Keevash and Sudakov proved that the -partite Tur\'an
graph maximizes the number of distinct -edge-colorings with no monochromatic
for all fixed and , among all -vertex graphs. In this
paper, we determine this function asymptotically for among -vertex
graphs with sub-linear independence number. Somewhat surprisingly, unlike
Alon-Balogh-Keevash-Sudakov's result, the extremal construction from
Ramsey-Tur\'an theory, as a natural candidate, does not maximize the number of
distinct edge-colorings with no monochromatic cliques among all graphs with
sub-linear independence number, even in the 2-colored case.
In the second problem, we determine the maximum number of triangles
asymptotically in an -vertex -free graph with . The
extremal graphs have similar structure to the extremal graphs for the classical
Ramsey-Tur\'an problem, i.e.~when the number of edges is maximized.Comment: 22 page
The typical structure of maximal triangle-free graphs
Recently, settling a question of Erd\H{o}s, Balogh and
Pet\v{r}\'{i}\v{c}kov\'{a} showed that there are at most
-vertex maximal triangle-free graphs, matching the previously known lower
bound. Here we characterize the typical structure of maximal triangle-free
graphs. We show that almost every maximal triangle-free graph admits a
vertex partition such that is a perfect matching and is an
independent set.
Our proof uses the Ruzsa-Szemer\'{e}di removal lemma, the
Erd\H{o}s-Simonovits stability theorem, and recent results of
Balogh-Morris-Samotij and Saxton-Thomason on characterization of the structure
of independent sets in hypergraphs. The proof also relies on a new bound on the
number of maximal independent sets in triangle-free graphs with many
vertex-disjoint 's, which is of independent interest.Comment: 17 page
Proof of Koml\'os's conjecture on Hamiltonian subsets
Koml\'os conjectured in 1981 that among all graphs with minimum degree at
least , the complete graph minimises the number of Hamiltonian
subsets, where a subset of vertices is Hamiltonian if it contains a spanning
cycle. We prove this conjecture when is sufficiently large. In fact we
prove a stronger result: for large , any graph with average degree at
least contains almost twice as many Hamiltonian subsets as ,
unless is isomorphic to or a certain other graph which we
specify.Comment: 33 pages, to appear in Proceedings of the London Mathematical Societ
Sharp bound on the number of maximal sum-free subsets of integers
Cameron and Erd\H{o}s asked whether the number of \emph{maximal} sum-free
sets in is much smaller than the number of sum-free sets. In
the same paper they gave a lower bound of for the
number of maximal sum-free sets. Here, we prove the following: For each , there is a constant such that, given any ,
contains maximal sum-free sets. Our
proof makes use of container and removal lemmas of Green, a structural result
of Deshouillers, Freiman, S\'os and Temkin and a recent bound on the number of
subsets of integers with small sumset by Green and Morris. We also discuss
related results and open problems on the number of maximal sum-free subsets of
abelian groups.Comment: 25 pages, to appear in the Journal of the European Mathematical
Societ
Intersecting families of discrete structures are typically trivial
The study of intersecting structures is central to extremal combinatorics. A
family of permutations is \emph{-intersecting} if
any two permutations in agree on some indices, and is
\emph{trivial} if all permutations in agree on the same
indices. A -uniform hypergraph is \emph{-intersecting} if any two of its
edges have vertices in common, and \emph{trivial} if all its edges share
the same vertices.
The fundamental problem is to determine how large an intersecting family can
be. Ellis, Friedgut and Pilpel proved that for sufficiently large with
respect to , the largest -intersecting families in are the trivial
ones. The classic Erd\H{o}s--Ko--Rado theorem shows that the largest
-intersecting -uniform hypergraphs are also trivial when is large. We
determine the \emph{typical} structure of -intersecting families, extending
these results to show that almost all intersecting families are trivial. We
also obtain sparse analogues of these extremal results, showing that they hold
in random settings.
Our proofs use the Bollob\'as set-pairs inequality to bound the number of
maximal intersecting families, which can then be combined with known stability
theorems. We also obtain similar results for vector spaces.Comment: 19 pages. Update 1: better citation of the Gauy--H\`an--Oliveira
result. Update 2: corrected statement of the unpublished Hamm--Kahn result,
and slightly modified notation in Theorem 1.6 Update 3: new title, updated
citations, and some minor correction
Embedding problems and Ramsey-Turán variations in extremal graph theory
In this dissertation, we will focus on a few problems in extremal graph theory. The first chapter consists of some basic terms and tools.
In Chapter 2, we study a conjecture of Mader on embedding subdivisions of cliques. Improving a bound by Mader, Bollobás and Thomason, and independently Komlós and Szemerédi proved that every graph with average degree d contains a subdivision of K_[Ω(√d)]. The disjoint union of complete bipartite graph K_(r,r) shows that their result is best possible. In particular, this graph does not contain a subdivision of a clique of order w(r). However, one can ask whether their bound can be improved if we forbid such structures. There are various results in this direction, for example Kühn and Osthus proved that their bound can be improved if we forbid a complete bipartite graph of fixed size. Mader proved that that there exists a function g(r) such that every graph G with ẟ(G) ≥ r and girth at least g(r) contains a TK_(r+1). He also asked about the minimum value of g(r). Furthermore, he conjectured that C_4-freeness is enough to guarantee a clique subdivision of order linear in average degree. Some major steps towards these two questions were made by Kühn and Osthus, such as g(r) ≤ 27 and g(r) ≤ 15 for large enough r. In an earlier result, they proved that for C_4-free graphs one can find a subdivision of a clique of order almost linear in minimum degree. Together with József Balogh and Hong Liu, we proved that every C_(2k)-free graph, for k ≥ 3, has such a subdivision of a large clique. We also proved the dense case of Mader's conjecture in a stronger sense.
In Chapter 3, we study a graph-tiling problem. Let H be a fixed graph on h vertices and G be a graph on N vertices such that h|n. An H-factor is a collection of n/h vertex-disjoint copies of H in G. The problem of finding sufficient conditions for a graph G to have an H-factor has been extensively studied; most notable is the celebrated Hajnal-Szemerédi Theorem which states that every n-vertex graph G with ẟ(G) ≥ (1-1/r)n has a K_r-factor. The case r=3 was proved earlier by Corrádi and Hajnal. Another type of problems that have been studied over the past few decades are the so-called Ramsey-Turán problems. Erdős and Sós, in 1970, began studying a variation on Turán's theorem: What is the maximum number of edges in an n-vertex, K_r-free graph G if we add extra conditions to avoid the very strict structure of Turán graph. In particular, what if besides being K_r-free, we also require α(G) = o(n) . Since the extremal example for the Hajnal-Szemerédi theorem is very similar to the Turán graph, one can similarly ask how stable is this extremal example. With József Balogh and Theodore Molla, we proved that for an n-vertex graph G with α(G) = o(n), if ẟ(G) ≥ (1/2+o(1))n then G has a triangle factor. This minimum degree condition is asymptotically best possible. We also consider a fractional variant of the Corrádi-Hajnal Theorem, settling the triangle case of a conjecture of Balogh, Kemkes, Lee, and Young.
In Chapter 4, we first consider a Ramsey-Turán variant of a theorem of Erd\Ho s. In 1962, he proved that for any r > l ≥ 2, among all K_r-free graphs, the (r-1)-partite Turán graph has the maximum number of copies of K_l. We consider a Ramsey-Turán-type variation of Erdős's result. In particular, we define RT(F,H,f(n)) to be the maximum number of copies of F in an H-free graph with n-vertices and independence number at most f(n). We study this function for different graphs F and H. Recently, Balogh, Hu and Simonovits proved that the Ramsey-Turán function for even cliques experiences a jump. We show that the function RT(K_3,H,f(n)) has a similar behavior when H is an even clique. We also study the sparse analogue of a theorem of Bollobás and Gy\Ho ri about the maximum number of triangles that a C_5-free graph can have. Finally, we consider a Ramsey-Turán variant of a function studied by Erdős and Rothschild about the maximum number of edge-colorings that an n-vertex graph can have without a monochromatic copy of a given graph
Local conditions for exponentially many subdivisions
Given a graph F, let st(F) be the number of subdivisions of F, each with a different vertex set, which one can guarantee in a graph G in which every edge lies in at least t copies of F. In 1990, Tuza asked for which graphs F and large t, one has that st(F) is exponential in a power of t. We show that, somewhat surprisingly, the only such F are complete graphs, and for every F which is not complete, st(F) is polynomial in t. Further, for a natural strengthening of the local condition above, we also characterize those F for which st(F) is exponential in a power of t
- …