9 research outputs found

    Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice

    Get PDF
    Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b[superscript −/−]) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b[superscript −/−] mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b[superscript −/−] mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation–reduction in altered PUFA and triglyceride metabolism.Pfizer Inc. (grant)National Institutes of Health (U.S.) (grant 5R24DK090963)National Institutes of Health (U.S.) (grant U54-CA112967)National Institutes of Health (U.S.) (grant CA49152 R37)National Institutes of Health (U.S.) (grant R01-DK080756)National Mouse Metabolic Phenotyping Center at UMASS (Grant (U24-DK093000))National Science Foundation (U.S.) (Graduate Research Fellowship

    Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis

    Get PDF
    Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood [1, 2]. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.National Institutes of Health (U.S.)National Cancer Institute (U.S.)Smith Family FoundationDamon Runyon Cancer Research FoundationBurroughs Wellcome Fun

    Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    No full text
    Sharfi H, Eldar-Finkelman H. Sequential phosphorylation of insulin receptor substrate-2 by glycogen synthase kinase-3 and c-Jun NH2-terminal kinase plays a role in hepatic insulin signaling. Am J Physiol Endocrinol Metab 294: E307-E315, 2008. First published November 20, 2007 doi:10.1152/ajpendo.00534.2007.-Serine phosphorylation of insulin receptor substrate (IRS) proteins is a potential inhibitory mechanism in insulin signaling. Here we show that IRS-2 is phosphorylated by glycogen synthase kinase (GSK)-3. Phosphorylation by GSK-3 requires prior phosphorylation of its substrates, prompting us to identify the "priming kinase." It was found that the stress activator anisomycin enhanced the ability of GSK-3 to phosphorylate IRS-2. Use of a selective c-Jun NH2-terminal kinase (JNK) inhibitor and cells overexpressing JNK implicated JNK as the priming kinase. This allowed us to narrow down the number of potential GSK-3 phosphorylation sites within IRS-2 to four regions that follow the motif SXXXSP. IRS-2 deletion mutants enabled us to localize the GSK-3 and JNK phosphorylation sites to serines 484 and 488, respectively. Mutation at serine 488 reduced JNK phosphorylation of IRS-2, and mutation of each site separately abolished GSK-3 phosphorylation of IRS-2. Treatment of H4IIE liver cells with anisomycin inhibited insulin-induced tyrosine phosphorylation of IRS-2; inhibition was reversed by pretreatment with the JNK and GSK-3 inhibitors. Moreover, overexpression of JNK and GSK-3 in H4IIE cells reduced insulin-induced tyrosine phosphorylation of IRS-2 and its association with the p85 regulatory subunit of phosphatidylinositol 3-kinase. Finally, both GSK-3 and JNK are abnormally upregulated in the diabetic livers of ob/obmice. Together, our data indicate that IRS-2 is sequentially phosphorylated by JNK and GSK-3 at serines 484/488 and provide evidence for their inhibitory role in hepatic insulin signaling. liver cells; insulin resistance THE INSULIN RECEPTOR SUBSTRATE (IRS) proteins are cytoplasmic adaptor proteins that mediate most, if not all, insulin signaling pathways. Of the six different IRS proteins identified, IRS-1 and IRS-2 participate in insulin-mediating mitogenic growth and nutrient homeostasis (66). IRS-1/2 proteins become tyrosyl-phosphorylated by the insulin receptor (IR) tyrosine kinase and simultaneously initiate multiple signaling cascades via the recruitment of SH2-containing proteins, including the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase), Grb-2, SHP2, Nck, and Crk (37, 65). These signaling molecules activate downstream effectors that mediate the metabolic and growth stimulatory effects of insulin Increasing evidence now suggests that serine/threonine phosphorylation of IRS-1 is a key player in negative-feedback regulation of insulin signaling. Studies detected enhanced in vivo serine phosphorylation of IRS-1 in diabetic tissue

    Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival

    Get PDF
    Previous experiments suggest a connection between the N-alpha-acetylation of proteins and sensitivity of cells to apoptotic signals. Here, we describe a biochemical assay to detect the acetylation status of proteins and demonstrate that protein N-alpha-acetylation is regulated by the availability of acetyl-CoA. Because the antiapoptotic protein Bcl-xL is known to influence mitochondrial metabolism, we reasoned that Bcl-xL may provide a link between protein N-alpha-acetylation and apoptosis. Indeed, Bcl-xL overexpression leads to a reduction in levels of acetyl-CoA and N-alpha-acetylated proteins in the cell. This effect is independent of Bax and Bak, the known binding partners of Bcl-xL. Increasing cellular levels of acetyl-CoA by addition of acetate or citrate restores protein N-alpha-acetylation in Bcl-xL-expressing cells and confers sensitivity to apoptotic stimuli. We propose that acetyl-CoA serves as a signaling molecule that couples apoptotic sensitivity to metabolism by regulating protein N-alpha-acetylation
    corecore