72 research outputs found

    Survey of polypharmacy prescription in a tertiary care hospital, belagavi

    Get PDF
      Polypharmacy is the use of four or more medications in one prescription or implies the prescription of too many medications for an individual. Concerns about polypharmacy include increase adverse drug reactions, drug interactions, prescribing cascade and higher cost. Objectives: To conduct a prescription survey of polypharmacy in tertiary care hospital at Belagavi. Methodology: The study was conducted in the Medicine outpatient department of a tertiary care hospital, Belagavi, after obtaining approval and clearance from the Institutional Ethics Committee. Total 83 patients were selected by Simple Random Sampling and the data were collected prospectively by direct observation in specially designed proforma containing relevant patient details like registration number, age, gender and diagnosis, disease data and drug data. Results: Out of the total sample population (N=83), 56.62% had prescriptions falling under major polypharmacy (>6 drugs), 43.37% had prescriptions categorized as minor polypharmacy (3-5 drugs). The most common age group of patients receiving prescriptions with polypharmacy was between 41 to 60 years accounting for 38.55%. Majority of the patients receiving prescriptions with polypharmacy in our study were females (59.03%) as compared to males (40.96%). Major polypharmacy is more prevalent in patients receiving treatment for Hypertension (60.24%) followed by patients with diabetes (23.67%). Conclusion: Our prescription survey portrays polypharmacy to be widely prevalent in a tertiary care setting. Specific treatment goals with certainty are the essential need for curing diseases rather than polypharmacy, which could be a possible threat of more harm than good

    A model for research supervision of international students in engineering and information technology disciplines: Final Report 2013

    Get PDF
    A large proportion (over 12 per cent) of international and non-English speaking background (NESB) postgraduate research students enrol in engineering and information technology (IT) programs in Australian universities. They find themselves in an advanced research culture, and are technically and scientifically challenged early in their programs. This is in addition to cultural, social and religious isolation and linguistic barriers they have to contend with. The project team surveyed this cohort at QUT and UWA, on the hypothesis that they face challenges that are more discipline-specific. The results of the survey indicate that existing supervisory frameworks which are limited to linguistic contexts are not fully assisting these students and supervisors to achieve high quality research. The goal of this project is to extend these supervisory frameworks to a holistic model that will address the unique needs and supervisory issues these students face in engineering and IT disciplines. The model will be useable by all other Australian universities

    Spatio-temporal evaluation of plant height in corn via unmanned aerial systems

    Get PDF
    Detailed spatial and temporal data on plant growth are critical to guide crop management. Conventional methods to determine field plant traits are intensive, time-consuming, expensive, and limited to small areas. The objective of this study was to examine the integration of data collected via unmanned aerial systems (UAS) at critical corn (Zea mays L.) developmental stages for plant height and its relation to plant biomass. The main steps followed in this research were (1) workflow development for an ultrahigh resolution crop surface model (CSM) with the goal of determining plant height (CSM-estimated plant height) using data gathered from the UAS missions; (2) validation of CSM-estimated plant height with ground-truthing plant height (measured plant height); and (3) final estimation of plant biomass via integration of CSM-estimated plant height with ground-truthing stem diameter data. Results indicated a correlation between CSM-estimated plant height and ground-truthing plant height data at two weeks prior to flowering and at flowering stage, but high predictability at the later growth stage. Log–log analysis on the temporal data confirmed that these relationships are stable, presenting equal slopes for both crop stages evaluated. Concluding, data collected from low-altitude and with a low-cost sensor could be useful in estimating plant height.Sociedad Argentina de Informática e Investigación Operativ

    Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques

    Get PDF
    Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site) classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants). Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection.Sociedad Argentina de Informática e Investigación Operativ

    Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques

    Get PDF
    Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site) classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants). Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection.Sociedad Argentina de Informática e Investigación Operativ

    Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques

    Get PDF
    Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site) classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants). Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection.Sociedad Argentina de Informática e Investigación Operativ

    Early-season plant-to-plant spatial uniformity can affect soybean yields

    Get PDF
    Increased soybean (Glycine max L. Merril) seed costs have motivated interest in reduced seeding rates to improve profitability while maintaining or increasing yield. However, little is known about the effect of early-season plant-to-plant spatial uniformity on the yield of modern soybean varieties planted at reduced seeding rates. The objectives of this study were to (i) investigate traditional and devise new metrics for characterizing early-season plant-to-plant spatial uniformity, (ii) identify the best metrics correlating plant-to-plant spatial uniformity and soybean yield, and (iii) evaluate those metrics at different seeding rate (and achieved plant density) levels and yield environments. Soybean trials planted in 2019 and 2020 compared seeding rates of 160, 215, 270, and 321 thousand seeds ha−1 planted with two different planters, Max Emerge and Exact Emerge, in rainfed and irrigated conditions in the United States (US). In addition, trials comparing seeding rates of 100, 230, 360, and 550 thousand seeds ha−1 were conducted in Argentina (Arg) in 2019 and 2020. Achieved plant density, grain yield, and early-season plant-to-plant spacing (and calculated metrics) were measured in all trials. All site-years were separated into low- (2.7 Mg ha−1), medium- (3 Mg ha−1), and high- (4.3 Mg ha−1) yielding environments, and the tested seeding rates were separated into low ( 300 seeds m−2) levels. Out of the 13 metrics of spatial uniformity, standard deviation (sd) of spacing and of achieved versus targeted evenness index (herein termed as ATEI, observed to theoretical ratio of plant spacing) showed the greatest correlation with soybean yield in US trials (R2 = 0.26 and 0.32, respectively). However, only the ATEI sd, with increases denoting less uniform spacing, exhibited a consistent relationship with yield in both US and Arg trials. The effect of spatial uniformity (ATEI sd) on soybean yield differed by yield environment. Increases in ATEI sd (values > 1) negatively impacted soybean yields in both low- and medium-yield environments, and in achieved plant densities below 200 thousand plants ha−1. High-yielding environments were unaffected by variations in spatial uniformity and plant density levels. Our study provides new insights into the effect of early-season plant-to-plant spatial uniformity on soybean yields, as influenced by yield environments and reduced plant densities.Fil: Pereyra, Valentina M.. Kansas State University; Estados UnidosFil: Bastos, Leonardo M.. University of Georgia; Estados UnidosFil: Froes de Borja Reis, André. State University of Louisiana; Estados UnidosFil: Melchiori, Ricardo J. M.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Entre Ríos. Estación Experimental Agropecuaria Paraná; ArgentinaFil: Maltese, Nicolás Elías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Appelhans, Stefania Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ciencias Agropecuarias; ArgentinaFil: Vara Prasad, P. V.. Kansas State University; Estados UnidosFil: Wright, Yancy. No especifíca;Fil: Brokesh, Edwin. Kansas State University; Estados UnidosFil: Sharda, Ajay. Kansas State University; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados Unido

    Support services for higher degree research students: a survey of three Australian universities

    Get PDF
    A survey was conducted across three Australian universities to identify the types and format of support services available for higher degree research (HDR, or MA and Ph.D.) students. The services were classified with regards to availability, location and accessibility. A comparative tool was developed to help institutions categorise their services in terms of academic, administrative, social and settlement, language and miscellaneous (other) supports. All three universities showed similarities in the type of academic support services offered, while differing in social and settlement and language support services in terms of the location and the level of accessibility of these services. The study also examined the specific support services available for culturally and linguistically diverse (CALD) students. The three universities differed in their emphases in catering to CALD needs, with their allocation of resources reflecting these differences. The organisation of these services within the universities was further assessed to determine possible factors that may influence the effective delivery of these services, by considering HDR and CALD student specific issues. The findings and tools developed by this study may be useful to HDR supervisors and university administrators in identifying key support services to better improve outcomes for the HDR students and universities

    Chaos or complex systems? Identifying factors influencing the success of international and NESB graduate research students in Engineering and Information Technology Fields

    Get PDF
    The paper explores the results an on-going research project to identify factors influencing the success of international and non-English speaking background (NESB) gradúate students in the fields of Engineering and IT at three Australian universities: the Queensland University of Technology (QUT), the University of Western Australia (UWA), and Curtin University (CU). While the larger study explores the influence of factors from both sides of the supervision equation (e.g., students and supervisors), this paper focusses primarily on the results of an online survey involving 227 international and/or NESB graduate students in the areas of Engineering and IT at the three universities. The study reveals cross-cultural differences in perceptions of student and supervisor roles, as well as differences in the understanding of the requirements of graduate study within the Australian Higher Education context. We argue that in order to assist international and NESB research students to overcome such culturally embedded challenges, it is important to develop a model which recognizes the complex interactions of factors from both sides of the supervision relationship, in order to understand this cohort‟s unique pedagogical needs and develop intercultural sensitivity within postgraduate research supervision
    • …
    corecore