40 research outputs found

    The application of LANDSAT-1 imagery for monitoring strip mines in the new river watershed in northeast Tennessee, part 2

    Get PDF
    The author has identified the following significant results. LANDSAT imagery and supplementary aircraft photography of the New River drainage basin were subjected to a multilevel analysis using conventional photointerpretation methods, densitometric techniques, multispectral analysis, and statistical tests to determine the accuracy of LANDSAT-1 imagery for measuring strip mines of common size. The LANDSAT areas were compared with low altitude measurements. The average accuracy over all the mined land sample areas mapped from LANDSAT-1 was 90%. The discrimination of strip mine subcategories is somewhat limited on LANDSAT imagery. A mine site, whether active or inactive, can be inferred by lack of vegetation, by shape, or image texture. Mine ponds are difficult or impossible to detect because of their small size and turbidity. Unless bordered and contrasted with vegetation, haulage roads are impossible to delineate. Preparation plants and refuge areas are not detectable. Density slicing of LANDSAT band 7 proved most useful in the detection of reclamation progress within the mined areas. For most state requirements for year-round monitoring of surface mined land, LANDSAT is of limited value. However, for periodic updating of regional surface maps, LANDSAT may provide sufficient accuracies for some users

    Remote sensing application to regional activities

    Get PDF
    Two agencies within the State of Tennessee were identified whereby the transfer of aerospace technology, namely remote sensing, could be applied to their stated problem areas. Their stated problem areas are wetland and land classification and strip mining studies. In both studies, LANDSAT data was analyzed with the UTSI video-input analog/digital automatic analysis and classification facility. In the West Tennessee area three land-use classifications could be distinguished; cropland, wetland, and forest. In the East Tennessee study area, measurements were submitted to statistical tests which verified the significant differences due to natural terrain, stripped areas, various stages of reclamation, water, etc. Classifications for both studies were output in the form of maps of symbols and varying shades of gray

    Convection and electrodynamic signatures in the vicinity of a Sun-aligned arc: Results from the Polar Acceleration Regions and Convection Study (Polar ARCS)

    Get PDF
    An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow

    Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4

    Get PDF
    Abstract We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4 nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted by Venus atmosphere/ionosphere models. The ELS energy resolution (DE/E$7%) means that these are the first detailed measurements of such electrons. Considerations of ion production and transport in the atmosphere of Venus suggest that the observed photoelectron peaks are due primarily to ionization of atomic oxygen.

    Modeled \u3ci\u3eF\u3c/i\u3e Region Response to Auroral Dynamics Based Upon Dynamics Explorer Auroral Observations

    Get PDF
    Auroral images from the Dynamics Explorer 1 (DE 1) scanning auroral imager have been combined with in situ auroral precipitation data from the DE 2 low altitude plasma instrument to form a time-dependent global auroral energy flux model. This model has both good time (12 min) and spatial (100 km) resolution compared to that currently available for global scale ionospheric and thermospheric modeling. The development and comparison of this model with others are discussed. Data from an aurorally active period, November 25, 1981, are presented and used as a case study for this model. Using a global ionospheric model, the effect of the DE auroral model is contrasted with that of a conventional empirical auroral energy flux model. Major differences in the modeled F region ionosphere are predicted from this comparative study. Specifically, F region densities differ by factors of two to four, while density boundary locations differ by up to 5° in latitude. The results indicate that “pixel size” auroral fine-structure must be included in the global ionosphere and thermosphere models when they are tested against specific ground-based or satellite data sets if an unambiguous result is to be obtained. The longer time constants of the F region are not enough to smooth-out the auroral (spatial and temporal) dynamics

    Ionospheric Simulation Compared with Dynamics Explorer Observations for November 22, 1981

    Get PDF
    Dynamics Explorer (DE) 2 electric field and particle data have been used to constrain the inputs of a time-dependent ionospheric model (TDIM) for a simulation of the ionosphere on November 22, 1981. The simulated densities have then been critically compared with the DE 2 electron density observations. This comparison uncovers a model-data disagreement in the morning sector trough, generally good agreement of the background density in the polar cap and evening sector trough, and a difficulty in modelling the observed polar F layer patches. From this comparison, the consequences of structure in the electric field and precipitation inputs can be seen. This is further highlighted during a substorm period for which DE 1 auroral images were available. Using these images, a revised dynamic particle precipitation pattern was used in the ionospheric model; the resulting densities were different from the original simulation. With this revised dynamic precipitation model, improved density agreement is obtained in the auroral/polar regions where the plasma convection is not stagnant. However, the dynamic study also reveals a difficulty of matching dynamic auroral patterns with static empirical convection patterns. In this case, the matching of the models produced intense auroral precipitation in a stagnation region, which, in turn, led to exceedingly large TDIM densities
    corecore