377 research outputs found
A new highly segmented start counter for the CLAS detector
The design, construction and performance of a highly segmented Start Counter are described. The Start Counter is an integral part of the trigger used in photon beam running with CLAS in Hall B at the Thomas Jefferson National Accelerator Facility (TJNAF). The Start Counter is constructed of 24 2.2-mm-thick single-ended scintillation paddles, forming a hermetic hexagon around the target region. This device measures the interaction time of the incoming photon in the target by detecting the outgoing particles. The counter provides complex trigger topologies, shows good efficiency and achieved a time resolution of 350 ps
The Heavy Photon Search test detector
The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experimentŚłs technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+eâ invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+eâ pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab
Comment on the narrow structure reported by Amaryan et al
The CLAS Collaboration provides a comment on the physics interpretation of
the results presented in a paper published by M. Amaryan et al. regarding the
possible observation of a narrow structure in the mass spectrum of a
photoproduction experiment.Comment: to be published in Physical Review
Towards a resolution of the proton form factor problem: new electron and positron scattering data
There is a significant discrepancy between the values of the proton electric
form factor, , extracted using unpolarized and polarized electron
scattering. Calculations predict that small two-photon exchange (TPE)
contributions can significantly affect the extraction of from the
unpolarized electron-proton cross sections. We determined the TPE contribution
by measuring the ratio of positron-proton to electron-proton elastic scattering
cross sections using a simultaneous, tertiary electron-positron beam incident
on a liquid hydrogen target and detecting the scattered particles in the
Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide
range in virtual photon polarization () and momentum transfer
() simultaneously, as well as to cancel luminosity-related systematic
errors. The cross section ratio increases with decreasing at . This measurement is consistent with the size of the form
factor discrepancy at GeV and with hadronic calculations
including nucleon and intermediate states, which have been shown to
resolve the discrepancy up to GeV.Comment: 6 pages, 4 figures, submitted to PR
Cross sections for the ÎłpâK*+Î and ÎłpâK*+ÎŁ0 reactions measured at CLAS
The first high-statistics cross sections for the reactions ÎłpâK*+Î and ÎłpâK*+ÎŁ0 were measured using the CLAS detector at photon energies between threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. Differential cross sections are presented over the full range of the center-of-mass angles, and then fitted to Legendre polynomials to extract the total cross section. Results for the K*+Î final state are compared with two different calculations in an isobar and a Regge model, respectively. Theoretical calculations significantly underestimate the K*+Î total cross sections between 2.1 and 2.6 GeV, but are in better agreement with present data at higher photon energies
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Measurement of the neutron F2 structure function via spectator tagging with CLAS
We report on the first measurement of the F2 structure function of the
neutron from semi-inclusive scattering of electrons from deuterium, with
low-momentum protons detected in the backward hemisphere. Restricting the
momentum of the spectator protons to < 100 MeV and their angles to < 100
degrees relative to the momentum transfer allows an interpretation of the
process in terms of scattering from nearly on-shell neutrons. The F2n data
collected cover the nucleon resonance and deep-inelastic regions over a wide
range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear
corrections estimated to be less than a few percent. These measurements provide
the first determination of the neutron to proton structure function ratio
F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.Comment: 6 pages, 3 page
Measurement of Exclusive Electroproduction Structure Functions and their Relationship to Transversity GPDs
Exclusive electroproduction at a beam energy of 5.75 GeV has been
measured with the Jefferson Lab CLAS spectrometer. Differential cross sections
were measured at more than 1800 kinematic values in , , , and
, in the range from 1.0 to 4.6 GeV,\ up to 2 GeV,
and from 0.1 to 0.58. Structure functions and were extracted as functions of for each of
17 combinations of and . The data were compared directly with two
handbag-based calculations including both longitudinal and transversity GPDs.
Inclusion of only longitudinal GPDs very strongly underestimates and fails to account for and ,
while inclusion of transversity GPDs brings the calculations into substantially
better agreement with the data. There is very strong sensitivity to the
relative contributions of nucleon helicity flip and helicity non-flip
processes. The results confirm that exclusive electroproduction offers
direct experimental access to the transversity GPDs.Comment: 6 pages, 2 figure
Near-threshold Photoproduction of Phi Mesons from Deuterium
We report the first measurement of the differential cross section on
-meson photoproduction from deuterium near the production threshold for a
proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson
Lab. The measurement was carried out by a triple coincidence detection of a
proton, and near the theoretical production threshold of 1.57 GeV.
The extracted differential cross sections for the initial
photon energy from 1.65-1.75 GeV are consistent with predictions based on a
quasifree mechanism. This experiment establishes a baseline for a future
experimental search for an exotic -N bound state from heavier nuclear
targets utilizing subthreshold/near-threshold production of mesons
- âŠ