23 research outputs found

    Solar-powered direct contact membrane distillation system: performance and water cost evaluation

    Get PDF
    YesFresh water is crucial for life, supporting human civilizations and ecosystems, and its production is one of the global issues. To cope with this issue, we evaluated the performance and cost of a solar-powered direct contact membrane distillation (DCMD) unit for fresh water production in Karachi, Pakistan. The solar water heating system (SWHS) was evaluated with the help of a system advisor model (SAM) tool. The evaluation of the DCMD unit was performed by solving the DCMD mathematical model through a numerical iterative method in MATLAB software®. For the SWHS, the simulation results showed that the highest average temperature of 55.05 ◦C and lowest average temperature of 44.26 ◦C were achieved in May and December, respectively. The capacity factor and solar fraction of the SWHS were found to be 27.9% and 87%, respectively. An exponential increase from 11.4 kg/m2 ·h to 23.23 kg/m2 ·h in permeate flux was observed when increasing the hot water temperatures from 44 ◦C to 56 ◦C. In the proposed system, a maximum of 279.82 L/day fresh water was produced in May and a minimum of 146.83 L/day in January. On average, the solar-powered DCMD system produced 217.66 L/day with a levelized water cost of 23.01 USD/m3This research was funded by the Researcher’s Supporting Project Number (RSP-2021/269), King Saud University, Riyadh, Saudi Arabia

    Process Parameter Optimization of a Polymer Derived CeramicCoatings for Producing Ultra-High Gas Barrier

    Get PDF
    YesSilica is one of the most efficient gas barrier materials, and hence is widely used as anencapsulating material for electronic devices. In general, the processing of silica is carried out at hightemperatures, i.e., around 1000◦C. Recently, processing of silica has been carried out from a polymercalled Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen andyields pure silica. This material has attracted many researchers and has been widely used in manyapplications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductorindustries, and organic solar cells. In this paper, we have demonstrated the process optimization ofthe conversion of the PHPS into silica in terms of curing methods as well as curing the environment.Various curing methods including exposure to dry heat, damp heat, deep UV, and their combinationunder different environments were used to cure PHPS. FTIR analysis suggested that the quickestconversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100◦C.Curing with this method yields a water permeation rate of 10−3g/(m2·day) and oxygen permeationrate of less than 10−1cm3/(m2·day·bar). Rapid curing at low-temperature processing along withbarrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and avariety of similar applications.King Saud Universit

    Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures

    Get PDF
    Zn 0.95 Mn 0.05 O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800 ∘ C) for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process

    Modeling work practices under socio-technical systems for sustainable manufacturing performance

    Get PDF
    In light of the overwhelming consumption of resources by the manufacturing sector, this paper examined three key subsystems that are critical in greening the sector. Whereas the extant literature has focused on technological development to reduce environmental damage, it has not analyzed profoundly how manufacturing processes can be greened effectively. Hence, using carefully gathered data of 299 respondents and structural equation modeling, this paper sought to investigate the mediating effect of social, environmental, and technical subsystems on the relationship between management support and sustainable manufacturing performance. The results show that management support has a positive relationship with sustainable manufacturing performance (p < 0.005), while social, environmental, and technical subsystems partially mediate this relationship. Hence, efforts must be taken to encourage management of manufacturing firms to support sustainable management performance, while at the same time supporting them to introduce innovative social, environmental, and technical practices

    Solution processed PVB/mica flake coatings for the encapsulation of organic solar cells

    Get PDF
    YesOrganic photovoltaics (OPVs) die due to their interactions with environmental gases, i.e., moisture and oxygen, the latter being the most dangerous, especially under illumination, due to the fact that most of the active layers used in OPVs are extremely sensitive to oxygen. In this work we demonstrate solution-based effective barrier coatings based on composite of poly(vinyl butyral) (PVB)and mica flakes for the protection of poly (3-hexylthiophene) (P3HT)-based organic solar cells (OSCs)against photobleaching under illumination conditions. In the first step we developed a protective layer with cost effective and environmentally friendly methods and optimized its properties in terms of transparency, barrier improvement factor, and bendability. The developed protective layer maintained a high transparency in the visible region and improved oxygen and moisture barrier quality by the factor of ~7. The resultant protective layers showed ultra-flexibility, as no significant degradation in protective characteristics were observed after 10 K bending cycles. In the second step, a PVB/mica composite layer was applied on top of the P3HT film and subjected to photo-degradation. The P3HT films coated with PVB/mica composite showed improved stability under constant light irradiation and exhibited a loss of <20% of the initial optical density over the period of 150 h. Finally, optimized barrier layers were used as encapsulation for organic solar cell (OSC) devices. The lifetime results confirmed that the stability of the OSCs was extended from few hours to over 240 h in a sun test (65◦C, ambient RH%) which corresponds to an enhanced lifetime by a factor of 9 compared to devices encapsulated with pristine PVB.Higher Education Commission of Pakistan through NED University of Engineering and Technology, Karachi, Pakistan and “The APC was funded by Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs”

    Transient liquid phase bonding of magnesium alloys AZ31 using nickel coatings and high frequency induction heat sintering

    Get PDF
    Transient liquid phase (TLP) bonding process was applied to join magnesium alloy AZ31 samples with minimum microstructural changes. The magnesium samples were coated by 5 μm nickel prior to the TLP bonding. Bonding conditions of 8 MPa uniaxial pressure and 520 °C bonding temperature were applied for all bonds at various bonding times. The microstructure across the joint regions was examined as a function of bonding time (5–60 min). Investigating the change in Ni contents was examined by EDS line scan. It was noticed that Ni coating could not be observed by SEM for bonds made at 30 and 60 min due to complete dissolution of the Ni coating. Second phase particles containing Mg2Ni intermetallics were observed by X-ray Photoelectron Spectroscopy (XPS) near the joint region. The shear strength of the bonds initially increases with the increase in bonding time till 20 min. On the other hand, with bonding times over 20 min the shear strength decreases. Therefore the optimum bonding time at the conditions applied was concluded to be 20 min

    Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures

    No full text
    Zn0.95Mn0.05O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800°C) for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process
    corecore