23 research outputs found
Recommended from our members
Micro-alloying and surface texturing of Ti-6Al-4V alloy by embedding nanoparticles using gas tungsten arcwelding
YesTitanium alloy Ti-6Al-4V is known for both its excellent mechanical properties and its low surface hardness. This study explores a two-step process for depositing a hard nanocrystalline coating onto the surface of the Ti-alloy, followed by surface melting, which embeds hard nanoparticles into a thin surface layer of the alloy. The treated surface layer was studied using X-ray diffraction, scanning electron microscopy, and Vicker's micro-hardness testing. The results of the study show that the surface of the Ti-6Al-4V alloy can be successfully hardened by embedding nanosized Al2O3 particles into the surface using gas tungsten arc welding to melt the surface of the material. Surface melting the Ti-6Al-4V alloy with a 50A welding current produced the maximum microhardness of 701 HV0.2kg. The micro-hardness of the treated surface layer decreased with the increasing size of the nanoparticles, while the roughness of the surface increased with the increasing welding current. The heat input into the surface during the surface melting process resulted in the formation of various intermetallic compounds capable of further increasing the hardness of the Ti-6Al-4V surface
Recommended from our members
Effect of heat-treatment on the thermal and mechanical stability of Ni/Al2O3 nanocrystalline coatings
YesHeat-treatment is a frequently used technique for modifying the physical and chemical properties of materials. In this study, the effect of heat-treatment on the mechanical properties, thermal stability and surface morphology of two types of electrodeposited coatings (pure-Ni and Ni/Al2O3) were investigated. The XRD analyses showed that the crystal structure of the as-deposited coating changes from slightly amorphous to crystalline as the heat-treatment temperature increases. The heat-treatment of both the pure-Ni and the Ni/Al2O3 coating caused an increase of the grain size within the coatings. However, the unreinforced Ni coating experienced a faster growth rate than the Ni/Al2O3 coating, which resulted in a larger average grain size. The temperature-driven changes to the microstructure of the coatings caused a reduction in the hardness and wear resistance of the coatings. The presence of nanoparticles within the Ni/Al2O3 coating can successfully extend the operational temperature range of the coating to 473 K by pinning grain boundaries
Solar-powered direct contact membrane distillation system: performance and water cost evaluation
YesFresh water is crucial for life, supporting human civilizations and ecosystems, and its
production is one of the global issues. To cope with this issue, we evaluated the performance and cost
of a solar-powered direct contact membrane distillation (DCMD) unit for fresh water production in
Karachi, Pakistan. The solar water heating system (SWHS) was evaluated with the help of a system
advisor model (SAM) tool. The evaluation of the DCMD unit was performed by solving the DCMD
mathematical model through a numerical iterative method in MATLAB software®. For the SWHS,
the simulation results showed that the highest average temperature of 55.05 ◦C and lowest average
temperature of 44.26 ◦C were achieved in May and December, respectively. The capacity factor and
solar fraction of the SWHS were found to be 27.9% and 87%, respectively. An exponential increase
from 11.4 kg/m2
·h to 23.23 kg/m2
·h in permeate flux was observed when increasing the hot water
temperatures from 44 ◦C to 56 ◦C. In the proposed system, a maximum of 279.82 L/day fresh water
was produced in May and a minimum of 146.83 L/day in January. On average, the solar-powered
DCMD system produced 217.66 L/day with a levelized water cost of 23.01 USD/m3This research was funded by the Researcher’s Supporting Project Number (RSP-2021/269), King Saud University, Riyadh, Saudi Arabia
Process Parameter Optimization of a Polymer Derived CeramicCoatings for Producing Ultra-High Gas Barrier
YesSilica is one of the most efficient gas barrier materials, and hence is widely used as anencapsulating material for electronic devices. In general, the processing of silica is carried out at hightemperatures, i.e., around 1000◦C. Recently, processing of silica has been carried out from a polymercalled Perhydropolysilazane (PHPS). The PHPS reacts with environmental moisture or oxygen andyields pure silica. This material has attracted many researchers and has been widely used in manyapplications such as encapsulation of organic light-emitting diodes (OLED) displays, semiconductorindustries, and organic solar cells. In this paper, we have demonstrated the process optimization ofthe conversion of the PHPS into silica in terms of curing methods as well as curing the environment.Various curing methods including exposure to dry heat, damp heat, deep UV, and their combinationunder different environments were used to cure PHPS. FTIR analysis suggested that the quickestconversion method is the irradiation of PHPS with deep UV and simultaneous heating at 100◦C.Curing with this method yields a water permeation rate of 10−3g/(m2·day) and oxygen permeationrate of less than 10−1cm3/(m2·day·bar). Rapid curing at low-temperature processing along withbarrier properties makes PHPS an ideal encapsulating material for organic solar cell devices and avariety of similar applications.King Saud Universit
Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures
Zn 0.95 Mn 0.05 O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800 ∘ C) for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process
Modeling work practices under socio-technical systems for sustainable manufacturing performance
In light of the overwhelming consumption of resources by the manufacturing sector, this paper examined three key subsystems that are critical in greening the sector. Whereas the extant literature has focused on technological development to reduce environmental damage, it has not analyzed profoundly how manufacturing processes can be greened effectively. Hence, using carefully gathered data of 299 respondents and structural equation modeling, this paper sought to investigate the mediating effect of social, environmental, and technical subsystems on the relationship between management support and sustainable manufacturing performance. The results show that management support has a positive relationship with sustainable manufacturing performance (p < 0.005), while social, environmental, and technical subsystems partially mediate this relationship. Hence, efforts must be taken to encourage management of manufacturing firms to support sustainable management performance, while at the same time supporting them to introduce innovative social, environmental, and technical practices
Solution processed PVB/mica flake coatings for the encapsulation of organic solar cells
YesOrganic photovoltaics (OPVs) die due to their interactions with environmental gases, i.e., moisture and oxygen, the latter being the most dangerous, especially under illumination, due to the fact that most of the active layers used in OPVs are extremely sensitive to oxygen. In this work we demonstrate solution-based effective barrier coatings based on composite of poly(vinyl butyral) (PVB)and mica flakes for the protection of poly (3-hexylthiophene) (P3HT)-based organic solar cells (OSCs)against photobleaching under illumination conditions. In the first step we developed a protective layer with cost effective and environmentally friendly methods and optimized its properties in terms of transparency, barrier improvement factor, and bendability. The developed protective layer maintained a high transparency in the visible region and improved oxygen and moisture barrier quality by the factor of ~7. The resultant protective layers showed ultra-flexibility, as no significant degradation in protective characteristics were observed after 10 K bending cycles. In the second step, a PVB/mica composite layer was applied on top of the P3HT film and subjected to photo-degradation. The P3HT films coated with PVB/mica composite showed improved stability under constant light irradiation and exhibited a loss of <20% of the initial optical density over the period of 150 h. Finally, optimized barrier layers were used as encapsulation for organic solar cell (OSC) devices. The lifetime results confirmed that the stability of the OSCs was extended from few hours to over 240 h in a sun test (65◦C, ambient RH%) which corresponds to an enhanced lifetime by a factor of 9 compared to devices encapsulated with pristine PVB.Higher Education Commission of Pakistan through NED University of Engineering and Technology, Karachi, Pakistan and “The APC was funded by Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs”
Transient liquid phase bonding of magnesium alloys AZ31 using nickel coatings and high frequency induction heat sintering
Transient liquid phase (TLP) bonding process was applied to join magnesium alloy AZ31 samples with minimum microstructural changes. The magnesium samples were coated by 5 μm nickel prior to the TLP bonding. Bonding conditions of 8 MPa uniaxial pressure and 520 °C bonding temperature were applied for all bonds at various bonding times. The microstructure across the joint regions was examined as a function of bonding time (5–60 min). Investigating the change in Ni contents was examined by EDS line scan. It was noticed that Ni coating could not be observed by SEM for bonds made at 30 and 60 min due to complete dissolution of the Ni coating. Second phase particles containing Mg2Ni intermetallics were observed by X-ray Photoelectron Spectroscopy (XPS) near the joint region. The shear strength of the bonds initially increases with the increase in bonding time till 20 min. On the other hand, with bonding times over 20 min the shear strength decreases. Therefore the optimum bonding time at the conditions applied was concluded to be 20 min
Recommended from our members
Controlling the material removal and roughness of Inconel 718 in laser machining
NoNickel alloys including Inconel 718 are considered as challenging materials for machining. Laser beam machining could be a promising choice to deal with such materials for simple to complex machining features. The machining accuracy is mainly dependent on the rate of material removal per laser scan. Because of the involvement of many laser parameters and complexity of the machining mechanism it is not always simple to achieve machining with desired accuracy. Actual machining depth extremely varies from very low to aggressively high values with reference to the designed depth. Thus, a research is needed to be carried out to control the process parameters to get actual material removal rate (MRRact) equals to the theoretical material removal rate (MRRth) with minimum surface roughness (SR) of the machined surfaces. In this study, five important laser parameters have been used to investigate their effects on MRR and SR. Statistical analysis are performed to identify the significant parameters with their strength of effects. Mathematical models have been developed and validated to predict the machining responses. Optimal set of laser parameters have also been proposed and confirmed to achieve the actual MRR close to the designed MRR (MRR% = 100.1%) with minimum surface roughness (Ra = 2.67 µm).The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group number RG-1440-026
Phase Pure Synthesis and Morphology Dependent Magnetization in Mn Doped ZnO Nanostructures
Zn0.95Mn0.05O nanostructures were synthesized using sol gel derived autocombustion technique. As-burnt samples were thermally annealed at different temperatures (400, 600, and 800°C) for 8 hours to investigate their effect on structural morphology and magnetic behavior. X-ray diffraction and scanning electron microscopic studies demonstrated the improvement in crystallinity of phase pure wurtzite structure of Mn doped ZnO with variation of annealing temperature. Energy dispersive X-ray elemental compositional analysis confirmed the exact nominal compositions of the reactants. Electrical resistivity measurements were performed with variation in temperature, which depicted the semiconducting nature similar to parent ZnO after 5 at% Mn doping. Magnetic measurements by superconducting quantum interference device detected an enhanced trend of ferromagnetic interactions in thermally annealed compositions attributed to the improved structural morphology and crystalline refinement process