12,975 research outputs found

    Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem

    Get PDF
    Dynamical dark energy (DE) has been proposed to explain various aspects of the cosmological constant (CC) problem(s). For example, it is very difficult to accept that a strictly constant Lambda-term constitutes the ultimate explanation for the DE in our Universe. It is also hard to acquiesce in the idea that we accidentally happen to live in an epoch where the CC contributes an energy density value right in the ballpark of the rapidly diluting matter density. It should perhaps be more plausible to conceive that the vacuum energy, is actually a dynamical quantity as the Universe itself. More generally, we could even entertain the possibility that the total DE is in fact a mixture of vacuum energy and other dynamical components (e.g. fields, higher order terms in the effective action etc) which can be represented collectively by an effective entity X (dubbed the ``cosmon''). The ``cosmon'', therefore, acts as a dynamical DE component different from the vacuum energy. While it can actually behave phantom-like by itself, the overall DE fluid may effectively appear as standard quintessence, or even mimic at present an almost exact CC behavior. Thanks to the versatility of such cosmic fluid we can show that a composite DE system of this sort (``LXCDM'') may have a key to resolving the mysterious coincidence problem.Comment: LaTeX, 13 pages, 5 figure

    Dark energy: a quantum fossil from the inflationary Universe?

    Full text link
    The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically-free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term whose variation follows a power law of the redshift.Comment: LaTeX, 14 pages, extended discussion. References added. Accepted in J. Phys. A: Mathematical and Theoretica

    Phase-conjugate optical coherence tomography

    Get PDF
    Quantum optical coherence tomography (Q-OCT) offers a factor-of-two improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the non-classical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT), introduced here, shows that non-classical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross-correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT.Comment: 4 pages, 3 figure

    Nonlinear dynamics of beta induced Alfv\'en eigenmode driven by energetic particles

    Full text link
    Nonlinear saturation of beta induced Alfv\'en eigenmode, driven by slowing down energetic particles via transit resonance, is investigated by the nonlinear hybrid magnetohyrodynamic gyro-kinetic code (XHMGC). Saturation is characterized by frequency chirping and symmetry breaking between co- and counter-passing particles, which can be understood as the the evidence of resonance-detuning. The scaling of the saturation amplitude with the growth rate is also demonstrated to be consistent with radial resonance detuning due to the radial non-uniformity and mode structure

    From Solar to Stellar Brightness Variations: The Effect of Metallicity

    Full text link
    Context. Comparison studies of Sun-like stars with the Sun suggest an anomalously low photometric variability of the Sun compared to Sun-like stars with similar magnetic activity. Comprehensive understanding of stellar variability is needed, to find a physical reasoning for this observation. Aims. We investigate the effect of metallicity and effective temperature on the photometric brightness change of Sun-like stars seen at different inclinations. The considered range of fundamental stellar parameters is sufficiently small so the stars, investigated here, still count as Sun-like or even as solar twins. Methods. To model the brightness change of stars with solar magnetic activity, we extend a well established model of solar brightness variations, SATIRE (which stands for Spectral And Total Irradiance Reconstruction), which is based on solar spectra, to stars with different fundamental parameters. For that we calculate stellar spectra for different metallicities and effective temperature using the radiative transfer code ATLAS9. Results. We show that even a small change (e.g. within the observational error range) of metallicity or effective temperature significantly affects the photometric brightness change compared to the Sun. We find that for Sun-like stars, the amplitude of the brightness variations obtained for Str\"omgren (b + y)/2 reaches a local minimum for fundamental stellar parameters close to the solar metallicity and effective temperature. Moreover, our results show that the effect of inclination decreases for metallicity values greater than the solar metallicity. Overall, we find that an exact determination of fundamental stellar parameters is crucially important for understanding stellar brightness changes.Comment: 12 pages, 12 figures, accepted in A&

    Complete transfer of populations from a single state to a pre-selected superposition of states using Piecewise Adiabatic Passage

    Full text link
    We develop a method for executing robust and selective transfer of populations between a single level and pre-selected superpositions of energy eigenstates. Viewed in the frequency domain, our method amounts to executing a series of simultaneous adiabatic passages into each component of the target superposition state. Viewed in {the} time domain, the method works by accumulating the wavefunction of the target wave packet as it revisits the Franck Condon region, in what amounts to an extension of the Piecewise Adiabatic Passage technique [ Shapiro et.al., Phys. Rev. Lett. 99, 033002 (2007)] to the multi-state regime. The viability of the method is verified by performing numerical tests for the Na_2 molecule.Comment: 8 pages, 4 figure

    Tanzania Livestock Master Plan: The Dairy Roadmap

    Get PDF
    Bill & Melinda Gates Foundatio

    The role of the Fraunhofer lines in solar brightness variability

    Full text link
    The solar brightness varies on timescales from minutes to decades. A clear identification of the physical processes behind such variations is needed for developing and improving physics-based models of solar brightness variability and reconstructing solar brightness in the past. This is, in turn, important for better understanding the solar-terrestrial and solar-stellar connections. We estimate the relative contributions of the continuum, molecular, and atomic lines to the solar brightness variations on different timescales. Our approach is based on the assumption that variability of the solar brightness on timescales greater than a day is driven by the evolution of the solar surface magnetic field. We calculated the solar brightness variations employing the solar disc area coverage of magnetic features deduced from the MDI/SOHO observations. The brightness contrasts of magnetic features relative to the quiet Sun were calculated with a non-LTE radiative transfer code as functions of disc position and wavelength. By consecutive elimination of molecular and atomic lines from the radiative transfer calculations, we assessed the role of these lines in producing solar brightness variability. We show that the variations in Fraunhofer lines define the amplitude of the solar brightness variability on timescales greater than a day and even the phase of the total solar irradiance variability over the 11-year cycle. We also demonstrate that molecular lines make substantial contribution to solar brightness variability on the 11-year activity cycle and centennial timescales. In particular, our model indicates that roughly a quarter of the total solar irradiance variability over the 11-year cycle originates in molecular lines. The maximum of the absolute spectral brightness variability on timescales greater than a day is associated with the CN violet system between 380 and 390 nm.Comment: 9 pages, 4 figures, accepted for publication in Astronomy&Astrophysic
    • …
    corecore