23,469 research outputs found

    Observability of the neutrino flux from the inner region of the galactic disk

    Get PDF
    The observability of galactic neutrinos in a detector of 10 billion tons of water with an observing time of a few years is explored. Although the atmospheric flux exceeds the galactic flux considerably at energies greater than or equal to 1 TeV, the latter may still provide a marginally observable signal owing to its directionality. Galactic muon neutrinos with energy greater than or equal to 1 TeV will produce a signal approximately 2 sigma above the atmospheric background over a four year period. If electron neutrinos can also be studied with the deep underwater muon and neutrino detector, then galactic electron neutrinos above 1 TeV would give an approximate 4 to 5 sigma signal above the electron neutrino background over a four year integration time

    Two-mode heterodyne phase detection

    Get PDF
    We present an experimental scheme that achieves ideal phase detection on a two-mode field. The two modes aa and bb are the signal and image band modes of an heterodyne detector, with the field approaching an eigenstate of the photocurrent Z^=a+b†\hat{Z}=a+b^{\dag}. The field is obtained by means of a high-gain phase-insensitive amplifier followed by a high-transmissivity beam-splitter with a strong local oscillator at the frequency of one of the two modes.Comment: 3 pages, 1 figur

    Light trapping and guidance in plasmonic nanocrystals

    Full text link
    We illustrate the possibility of light trapping and funneling in periodic arrays of metallic nanoparticles. A controllable minimum in the transmission spectra of such constructs arises from a collective plasmon resonance phenomenon, where an incident plane wave sharply localizes in the vertical direction, remaining delocalized in the direction parallel to the crystal plane. Using hybrid arrays of different structures or different materials, we apply the trapping effect to structure the eigen-mode spectrum, introduce overlapping resonances, and hence direct the light in space in a wavelength-sensitive fashion

    The anomaly-induced effective action and natural inflation

    Full text link
    The anomaly-induced inflation (modified Starobinsky model) is based on the application of the effective quantum field theory approach to the Early Universe. We present a brief general review of the model and show that it does not require a fine-tuning for the parameters of the theory or initial data, gives a real chance to meet a graceful exit to the FRW phase and also has positive features with respect to the metric perturbations.Comment: Invited talk at the International Workshop on Astroparticle and High Energy Physics, October 14 - 18, 2003, Valencia, Spai

    The Equation of State of Dense Matter : from Nuclear Collisions to Neutron Stars

    Get PDF
    The Equation of State (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner-Hartree-Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu--Jona-Lasinio (NJL) and the Color Dielectric (CD) models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.Comment: 8 pages, 5 figures, invited talk given at NPA3, Dresden, March 200

    The Born and Lens-Lens Corrections to Weak Gravitational Lensing Angular Power Spectra

    Full text link
    We revisit the estimation of higher order corrections to the angular power spectra of weak gravitational lensing. Extending a previous calculation of Cooray and Hu, we find two additional terms to the fourth order in potential perturbations of large-scale structure corresponding to corrections associated with the Born approximation and the neglect of line-of-sight coupling of two foreground lenses in the standard first order result. These terms alter the convergence (κκ\kappa\kappa), the lensing shear E-mode (ϵϵ\epsilon\epsilon), and their cross-correlation (κϵ\kappa\epsilon) power spectra on large angular scales, but leave the power spectra of the lensing shear B-mode (ββ\beta\beta) and rotational (ωω\omega\omega) component unchanged as compared to previous estimates. The new terms complete the calculation of corrections to weak lensing angular power spectra associated with both the Born approximation and the lens-lens coupling to an order in which the contributions are most significant. Taking these features together, we find that these corrections are unimportant for any weak lensing survey, including for a full sky survey limited by cosmic variance.Comment: Added references, minor changes to text. 9 pages, 2 figure
    • …
    corecore