24,031 research outputs found

    Field-free molecular orientation by THz laser pulses at high temperature

    Full text link
    We investigate to which extend a THz laser pulse can be used to produce field-free molecular orientation at high temperature. We consider laser pulses that can be implemented with the state of the art technology and we show that the efficiency of the control scheme crucially depends on the parameters of the molecule. We analyze the temperature effects on molecular dynamics and we demonstrate that, for some molecules, a noticeable orientation can be achieved at high temperature.Comment: 13 pages, 7 figure

    Photoassociation adiabatic passage of ultracold Rb atoms to form ultracold Rb_2 molecules

    Full text link
    We theoretically explore photoassociation by Adiabatic Passage of two colliding cold ^{85}Rb atoms in an atomic trap to form an ultracold Rb_2 molecule. We consider the incoherent thermal nature of the scattering process in a trap and show that coherent manipulations of the atomic ensemble, such as adiabatic passage, are feasible if performed within the coherence time window dictated by the temperature, which is relatively long for cold atoms. We show that a sequence of ~2*10^7 pulses of moderate intensities, each lasting ~750 ns, can photoassociate a large fraction of the atomic ensemble at temperature of 100 microkelvin and density of 10^{11} atoms/cm^3. Use of multiple pulse sequences makes it possible to populate the ground vibrational state. Employing spontaneous decay from a selected excited state, one can accumulate the molecules in a narrow distribution of vibrational states in the ground electronic potential. Alternatively, by removing the created molecules from the beam path between pulse sets, one can create a low-density ensemble of molecules in their ground ro-vibrational state.Comment: RevTex, 23 pages, 9 figure

    Overlapping resonances in the control of intramolecular vibrational redistribution

    Get PDF
    Coherent control of bound state processes via the interfering overlapping resonances scenario [Christopher et al., J. Chem. Phys. 123, 064313 (2006)] is developed to control intramolecular vibrational redistribution (IVR). The approach is applied to the flow of population between bonds in a model of chaotic OCS vibrational dynamics, showing the ability to significantly alter the extent and rate of IVR by varying quantum interference contributions.Comment: 10 pages, 7 figure

    Incomplete Photonic Bandgap as Inferred from the Speckle Pattern of Scattered Light Waves

    Full text link
    Motivated by recent experiments on intensity correlations of the waves transmitted through disordered media, we demonstrate that the speckle pattern from disordered photonic crystal with incomplete band-gap represents a sensitive tool for determination the stop-band width. We establish the quantitative relation between this width and the {\em angualar anisotropy} of the intensity correlation function.Comment: 6 pages, 3 figure

    Automatic structures, rational growth and geometrically finite hyperbolic groups

    Full text link
    We show that the set SA(G)SA(G) of equivalence classes of synchronously automatic structures on a geometrically finite hyperbolic group GG is dense in the product of the sets SA(P)SA(P) over all maximal parabolic subgroups PP. The set BSA(G)BSA(G) of equivalence classes of biautomatic structures on GG is isomorphic to the product of the sets BSA(P)BSA(P) over the cusps (conjugacy classes of maximal parabolic subgroups) of GG. Each maximal parabolic PP is a virtually abelian group, so SA(P)SA(P) and BSA(P)BSA(P) were computed in ``Equivalent automatic structures and their boundaries'' by M.Shapiro and W.Neumann, Intern. J. of Alg. Comp. 2 (1992) We show that any geometrically finite hyperbolic group has a generating set for which the full language of geodesics for GG is regular. Moreover, the growth function of GG with respect to this generating set is rational. We also determine which automatic structures on such a group are equivalent to geodesic ones. Not all are, though all biautomatic structures are.Comment: Plain Tex, 26 pages, no figure

    Generic Quantum Ratchet Accelerator with Full Classical Chaos

    Get PDF
    A simple model of quantum ratchet transport that can generate unbounded linear acceleration of the quantum ratchet current is proposed, with the underlying classical dynamics fully chaotic. The results demonstrate that generic acceleration of quantum ratchet transport can occur with any type of classical phase space structure. The quantum ratchet transport with full classical chaos is also shown to be very robust to noise due to the large linear acceleration afforded by the quantum dynamics. One possible experiment allowing observation of these predictions is suggested.Comment: 4 pages, 4 figure

    Implementing Quantum Gates by Optimal Control with Doubly Exponential Convergence

    Full text link
    We introduce a novel algorithm for the task of coherently controlling a quantum mechanical system to implement any chosen unitary dynamics. It performs faster than existing state of the art methods by one to three orders of magnitude (depending on which one we compare to), particularly for quantum information processing purposes. This substantially enhances the ability to both study the control capabilities of physical systems within their coherence times, and constrain solutions for control tasks to lie within experimentally feasible regions. Natural extensions of the algorithm are also discussed.Comment: 4+2 figures; to appear in PR

    The Equation of State of Dense Matter : from Nuclear Collisions to Neutron Stars

    Get PDF
    The Equation of State (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within the Brueckner-Hartree-Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu--Jona-Lasinio (NJL) and the Color Dielectric (CD) models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.Comment: 8 pages, 5 figures, invited talk given at NPA3, Dresden, March 200

    Importance of cooling in triggering the collapse of hypermassive neutron stars

    Full text link
    The inspiral and merger of a binary neutron star (NSNS) can lead to the formation of a hypermassive neutron star (HMNS). As the HMNS loses thermal pressure due to neutrino cooling and/or centrifugal support due to gravitational wave (GW) emission, and/or magnetic breaking of differential rotation it will collapse to a black hole. To assess the importance of shock-induced thermal pressure and cooling, we adopt an idealized equation of state and perform NSNS simulations in full GR through late inspiral, merger, and HMNS formation, accounting for cooling. We show that thermal pressure contributes significantly to the support of the HMNS against collapse and that thermal cooling accelerates its "delayed" collapse. Our simulations demonstrate explicitly that cooling can induce the catastrophic collapse of a hot hypermassive neutron star formed following the merger of binary neutron stars. Thus, cooling physics is important to include in NSNS merger calculations to accurately determine the lifetime of the HMNS remnant and to extract information about the NS equation of state, cooling mechanisms, bar instabilities and B-fields from the GWs emitted during the transient phase prior to BH formation.Comment: 13 pages, 7 figures, matches published versio
    corecore