220 research outputs found

    Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections

    Get PDF
    Bacterial invasion of synovial joints, as in infectious or septic arthritis, can be difficult to treat in both veterinary and human clinical practice. Biofilms, in the form of free-floating clumps or aggregates, are involved with the pathogenesis of infectious arthritis and periprosthetic joint infection (PJI). Infection of a joint containing an orthopedic implant can additionally complicate these infections due to the presence of adherent biofilms. Because of these biofilm phenotypes, bacteria within these infected joints show increased antimicrobial tolerance even at high antibiotic concentrations. To date, animal models of PJI or infectious arthritis have been limited to small animals such as rodents or rabbits. Small animal models, however, yield limited quantities of synovial fluid making them impractical for in vitro research. Herein, we describe the use of ex vivo equine and porcine models for the study of synovial fluid induced biofilm aggregate formation and antimicrobial tolerance. We observed Staphylococcus aureus and other bacterial pathogens adapt the same biofilm aggregate phenotype with significant antimicrobial tolerance in both equine and porcine synovial fluid, analogous to human synovial fluid. We also demonstrate that enzymatic dispersal of synovial fluid aggregates restores the activity of antimicrobials. Future studies investigating the interaction of bacterial cell surface proteins with host synovial fluid proteins can be readily carried out in equine or porcine ex vivo models to identify novel drug targets for treatment of prevention of these difficult to treat infectious diseases

    Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract cancers

    Get PDF
    Antitumour activity; Neratinib; Biliary tract cancersActividad antitumoral; Neratinib; Cánceres de vías biliaresActivitat antitumoral; Neratinib; Càncers de vies biliarsHER2 mutations are infrequent genomic events in biliary tract cancers (BTCs). Neratinib, an irreversible, pan-HER, oral tyrosine kinase inhibitor, interferes with constitutive receptor kinase activation and has activity in HER2-mutant tumours. SUMMIT is an open-label, single-arm, multi-cohort, phase 2, ‘basket’ trial of neratinib in patients with solid tumours harbouring oncogenic HER2 somatic mutations (ClinicalTrials.gov: NCT01953926). The primary objective of the BTC cohort, which is now complete, is first objective response rate (ORR) to neratinib 240 mg orally daily. Secondary objectives include confirmed ORR, clinical benefit rate, progression-free survival, duration of response, overall survival, safety and tolerability. Genomic analyses were exploratory. Among 25 treatment-refractory patients (11 cholangiocarcinoma, 10 gallbladder, 4 ampullary cancers), the ORR is 16% (95% CI 4.5–36.1%). The most common HER2 mutations are S310F (n = 11; 48%) and V777L (n = 4; 17%). Outcomes appear worse for ampullary tumours or those with co-occurring oncogenic TP53 and CDKN2A alterations. Loss of amplified HER2 S310F and acquisition of multiple previously undetected oncogenic co-mutations are identified at progression in one responder. Diarrhoea is the most common adverse event, with any-grade diarrhoea in 14 patients (56%). Although neratinib demonstrates antitumour activity in patients with refractory BTC harbouring HER2 mutations, the primary endpoint was not met and combinations may be explored.The SUMMIT trial was sponsored/funded by Puma Biotechnology, Inc. Investigators from MSKCC who participated in the trial were also supported in part by a Cancer Center Support Grant (P30 CA008748) and Cycle for Survival. Puma Biotechnology, Inc was involved in the following: study design; data collection, analysis and interpretation of the data; writing of the report; the decision to submit the article for publication. The authors would like to thank all patients and their families for participating in the SUMMIT trial. The authors acknowledge David Hyman (Memorial Sloan Kettering), Richard Bryce (Puma Biotechnology), and Alshad Lalani (Puma Biotechnology) for their important contributions to the original SUMMIT study design, oversight, and interpretation, and Feng Xu (Puma Biotechnology) and Jane Liang (Puma Biotechnology) for statistical and programming support. The authors also thank Lee Miller and Deirdre Carman (Miller Medical Communications Ltd) for medical writing/editing assistance, which was funded by Puma Biotechnology, Inc

    Traumatic brain injury causes selective, CD74-dependent peripheral lymphocyte activation that exacerbates neurodegeneration

    Get PDF
    INTRODUCTION: Traumatic brain injury (TBI), a significant cause of death and disability, causes, as in any injury, an acute, innate immune response. A key component in the transition between innate and adaptive immunity is the processing and presentation of antigen by professional antigen presenting cells (APCs). Whether an adaptive immune response to brain injury is beneficial or detrimental is not known. Current efforts to understand the contribution of the immune system after TBI have focused on neuroinflammation and brain-infiltrating immune cells. Here, we characterize and target TBI-induced expansion of peripheral immune cells that may act as potential APCs. Because MHC Class II-associated invariant peptide (CLIP) is important for antigen processing and presentation, we engineered a competitive antagonist (CAP) for CLIP, and tested the hypothesis that peptide competition could reverse or prevent neurodegeneration after TBI. RESULTS: We show that after fluid percussion injury (FPI), peripheral splenic lymphocytes, including CD4+ and CD8+ T cells, regulatory T cells (Tregs), and γδ T cells, are increased in number within 24 hours after FPI. These increases were reversed by CAP treatment and this antagonism of CLIP also reduced neuroinflammation and neurodegeneration after TBI. Using a mouse deficient for the precursor of CLIP, CD74, we observed decreased peripheral lymphocyte activation, decreased neurodegeneration, and a significantly smaller lesion size following TBI. CONCLUSION: Taken together, the data support the hypothesis that neurodegeneration following TBI is dependent upon antigen processing and presentation that requires CD74. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-014-0143-5) contains supplementary material, which is available to authorized users

    PARP inhibitor efficacy depends on CD8+ T cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer.

    Get PDF
    Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8+ T cell infiltration and activation in vivo, and that CD8+ T cell depletion severely compromises anti-tumor efficacy. Olaparib-induced T cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared to HR-proficient TNBC cells and in vivo models. CRISPR-knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T cell infiltration in vivo. These findings elucidate an additional mechanism of action of PARP inhibitors and provide rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC

    Case report: response to the ERK1/2 inhibitor ulixertinib in BRAF D594G cutaneous melanoma.

    Get PDF
    Melanoma is characterized by oncogenic mutations in pathways regulating cell growth, proliferation, and metabolism. Greater than 80% of primary melanoma cases harbor aberrant activation of the mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase (MEK/ERK) pathway, with oncogenic mutations in BRAF, most notably BRAF V600E, being the most common. Significant progress has been made in BRAF-mutant melanoma using BRAF and MEK inhibitors; however, non-V600 BRAF mutations remain a challenge with limited treatment options. We report the case of an individual diagnosed with stage III BRAF D594G-mutant melanoma who experienced an extraordinary response to the ERK1/2 inhibitor ulixertinib as fourth-line therapy. Ulixertinib was obtained via an intermediate expanded access protocol with unique flexibility to permit both single-agent and combination treatments, dose adjustments, breaks in treatment to undergo surgery, and long-term preventive treatment following surgical resection offering this patient the potential for curative treatment

    Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents

    Get PDF
    Rationale: Primary ciliary dyskinesia (PCD), a genetically heterogeneous, recessive disorder of motile cilia, is associated with distinct clinical features. Diagnostic tests, including ultrastructural analysis of cilia, nasal nitric oxide measurements, and molecular testing for mutations in PCD genes, have inherent limitations

    Strengthening global-change science by integrating aeDNA with paleoecoinformatics

    Get PDF
    Ancient environmental DNA (aeDNA) data are close to enabling insights into past global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution. However, achieving this potential requires solutions that bridge bioinformatics and paleoecoinformatics. Essential needs include support for dynamic taxonomic inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA data are complex and heterogeneous, generated by dispersed researcher networks, with methods advancing rapidly. Hence, expert community governance and curation are essential to building high-value data resources. Immediate recommendations include uploading metabarcoding-based taxonomic inventories into paleoecoinformatic resources, building linkages among open bioinformatic and paleoecoinformatic data resources, harmonizing aeDNA processing workflows, and expanding community data governance. These advances will enable transformative insights into global-scale biodiversity dynamics during large environmental and anthropogenic changes

    The benefits and challenges of using crowdfunding to facilitate community-led projects in the context of digital civics

    Get PDF
    Digital technology is increasingly being used to bring citizens and communities together to address local concerns. While a variety of approaches have been developed that allow citizens and communities to improve their local communities, these approaches are often financially unsustainable. In this paper, we describe our exploration of crowdfunding as an alternative approach to funding and sustaining community-led projects in the context of digital civics. Through our analysis of four community-led crowdfunding projects, we explore the merits of crowdfunding in this context, demonstrating that it can a) provide an alternative funding mechanism suitable for financing some community-led projects, b) create a sense of empowerment and ownership, and c) increase community awareness. By reflecting on our experiences, we identify four key challenges to utilising crowdfunding to support community-led projects in the context digital civics. We also provide advice specific to crowdfunding in the context of digital civics, before discussing the role of crowdfunding within digital civics. By addressing these challenges, we will be able to better support community groups crowdfund for the public good
    corecore