329 research outputs found

    Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine ± cisplatin in patients with advanced solid tumours

    Get PDF
    Background: Berzosertib (formerly M6620, VX-970) is a highly potent and selective, first-in-class inhibitor of ataxia telangiectasia and Rad3-related protein kinase (ATR). We assessed multiple ascending doses of berzosertib + gemcitabine ± cisplatin in patients with resistant/refractory advanced solid tumours. Methods: We evaluated the safety, tolerability, pharmacokinetics (PK) and preliminary efficacy of intravenous berzosertib + gemcitabine ± cisplatin using a standard 3 + 3 dose-escalation design. The starting doses were berzosertib 18 mg/m2, gemcitabine 875 mg/m2 and cisplatin 60 mg/m2. Results: Fifty-two patients received berzosertib + gemcitabine and eight received berzosertib + gemcitabine + cisplatin. Four patients receiving berzosertib + gemcitabine had a total of seven dose-limiting toxicities (DLTs) and three receiving berzosertib + gemcitabine + cisplatin had a total of three DLTs. Berzosertib 210 mg/m2 (days 2 and 9) + gemcitabine 1000 mg/m2 (days 1 and 8) Q3W was established as the recommended Phase 2 dose (RP2D); no RP2D was determined for berzosertib + gemcitabine + cisplatin. Neither gemcitabine nor cisplatin affected berzosertib PK. Most patients in both arms achieved a best response of either partial response or stable disease. Conclusions: Berzosertib + gemcitabine was well tolerated in patients with advanced solid tumours and showed preliminary efficacy signs. Clinical trial identifier: NCT02157792

    PARP inhibitor efficacy depends on CD8+ T cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer.

    Get PDF
    Combinatorial clinical trials of PARP inhibitors with immunotherapies are ongoing, yet the immunomodulatory effects of PARP inhibition have been incompletely studied. Here, we sought to dissect the mechanisms underlying PARP inhibitor-induced changes in the tumor microenvironment of BRCA1-deficient triple-negative breast cancer (TNBC). We demonstrate that the PARP inhibitor olaparib induces CD8+ T cell infiltration and activation in vivo, and that CD8+ T cell depletion severely compromises anti-tumor efficacy. Olaparib-induced T cell recruitment is mediated through activation of the cGAS/STING pathway in tumor cells with paracrine activation of dendritic cells and is more pronounced in HR-deficient compared to HR-proficient TNBC cells and in vivo models. CRISPR-knockout of STING in cancer cells prevents proinflammatory signaling and is sufficient to abolish olaparib-induced T cell infiltration in vivo. These findings elucidate an additional mechanism of action of PARP inhibitors and provide rationale for combining PARP inhibition with immunotherapies for the treatment of TNBC

    Early Detection of Erlotinib Treatment Response in NSCLC by 3′-Deoxy-3′-[18F]-Fluoro-L-Thymidine ([18F]FLT) Positron Emission Tomography (PET)

    Get PDF
    Background: Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far been lacking. Methodology/Principal Findings: We performed a systematic comparison of 3′-Deoxy-3′-[18F^{18}F]-fluoro-L-thymidine ([18F^{18}F]FLT) and 2-[18F^{18}F]-fluoro-2-deoxy-D-glucose ([18F^{18}F]FDG) positron emission tomography (PET) for their potential to identify response to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive tumors exhibited a striking and reproducible decrease in [18F^{18}F]FLT uptake after only two days of treatment, [18F^{18}F]FDG PET based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F^{18}F]FLT PET but not [18F^{18}F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F^{18}F]FLT PET signal at day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the complete lack of [18F^{18}F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR. Conclusions: [18F^{18}F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early stage. [18F^{18}F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in patients with NSCLC

    Economic Ideas and Institutional Change: Evidence from Soviet Economic Discourse 1987-1991

    Full text link

    Long-term safety and efficacy of extended-interval prophylaxis with recombinant factor IX Fc fusion protein (rFIXFc) in subjects with haemophilia B

    Get PDF
    The safety, efficacy, and prolonged half-life of recombinant factor IX Fc fusion protein (rFIXFc) were demonstrated in the Phase 3 B-LONG (adults/adolescents ≥12 years) and Kids B-LONG (children <12 years) studies of subjects with haemophilia B (≤2 IU/dl). Here, we report interim, long-term safety and efficacy data from B-YOND, the rFIXFc extension study. Eligible subjects who completed B-LONG or Kids B-LONG could enrol in B-YOND. There were four treatment groups: weekly prophylaxis (20–100 IU/kg every 7 days), individualised prophylaxis (100 IU/kg every 8–16 days), modified prophylaxis (further dosing personalisation to optimise prophylaxis), and episodic (on-demand) treatment. Subjects could change treatment groups at any point. Primary endpoint was inhibitor development. One hundred sixteen subjects enrolled in B-YOND. From the start of the parent studies to the B-YOND interim data cut, median duration of rFIXFc treatment was 39.5 months and 21.9 months among adults/adolescents and children, respectively; 68/93 (73.1 %) adults/adolescents and 9/23 (39.1 %) children had ≥100 cumulative rFIXFc exposure days. No inhibitors were observed. Median annualised bleeding rates (ABRs) were low in all prophylaxis regimens: weekly (≥12 years: 2.3; <6 years: 0.0; 6 to <12 years: 2.7), individualised (≥12 years: 2.3; 6 to <12 years: 2.4), and modified (≥12 years: 2.4). One or two infusions were sufficient to control 97 % (adults/adolescents) and 95 % (children) of bleeding episodes. Interim data from B-YOND are consistent with data from B-LONG and Kids B-LONG, and confirm the long-term safety of rFIXFc, absence of inhibitors, and maintenance of low ABRs with prophylactic dosing every 1 to 2 weeks

    A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer

    Get PDF
    Purpose: To characterize the cardiovascular profile of sorafenib, a multitargeted kinase inhibitor, in patients with advanced cancer. Methods: Fifty-three patients with advanced cancer received oral sorafenib 400 mg bid in continuous 28-day cycles in this open-label study. Left ventricular ejection fraction (LVEF) was evaluated using multigated acquisition scanning at baseline and after 2 and 4 cycles of sorafenib. QT/QTc interval on the electrocardiograph (ECG) was measured in triplicate with a Holter 12-lead ECG at baseline and after 1 cycle of sorafenib. Heart rate (HR) and blood pressure (BP) were obtained in duplicate at baseline and after 1 and 4 cycles of sorafenib. Plasma pharmacokinetic data were obtained for sorafenib and its 3 main metabolites after 1 and 4 cycles of sorafenib. Results: LVEF (SD) mean change from baseline was -0.8 (±\pm8.6) LVEF(%) after 2 cycles (n=31) and -1.2 ±\pm7.8) LVEF(%) after 4 cycles of sorafenib (n=24). The QT/QTc mean changes from baseline observed at maximum sorafenib concentrations (tmaxt_{max}) after 1 cycle (n=31) were small (QTcB: 4.2 ms; QTcF: 9.0 ms). Mean changes observed after 1 cycle in BP (n=31) and HR (n=30) at maximum sorafenib concentrations (tmaxt_{max}) were moderate (up to 11.7 mm Hg and -6.6 bpm, respectively). No correlation was found between the AUC and (CmaxC_{max}) of sorafenib and its main metabolites and any cardiovascular parameters. Conclusions: The effects of sorafenib on changes in QT/QTc interval on the ECG, LVEF, BP, and HR were modest and unlikely to be of clinical significance in the setting of advanced cancer treatment
    corecore