720 research outputs found
A Learning Automata Based Solution to Service Selection in Stochastic Environments
With the abundance of services available in today’s world, identifying those of high quality is becoming increasingly difficult. Reputation systems can offer generic recommendations by aggregating user provided opinions about service quality, however, are prone to ballot stuffing and badmouthing . In general, unfair ratings may degrade the trustworthiness of reputation systems, and changes in service quality over time render previous ratings unreliable. In this paper, we provide a novel solution to the above problems based on Learning Automata (LA), which can learn the optimal action when operating in unknown stochastic environments. Furthermore, they combine rapid and accurate convergence with low computational complexity. In additional to its computational simplicity, unlike most reported approaches, our scheme does not require prior knowledge of the degree of any of the above mentioned problems with reputation systems. Instead, it gradually learns which users provide fair ratings, and which users provide unfair ratings, even when users unintentionally make mistakes. Comprehensive empirical results show that our LA based scheme efficiently handles any degree of unfair ratings (as long as ratings are binary). Furthermore, if the quality of services and/or the trustworthiness of users change, our scheme is able to robustly track such changes over time. Finally, the scheme is ideal for decentralized processing. Accordingly, we believe that our LA based scheme forms a promising basis for improving the performance of reputation systems in general
Recommended from our members
Paramagnetic Ionic Liquids for Measurements of Density Using Magnetic Levitation
Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value, or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation–anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.Chemistry and Chemical Biolog
Gravitational waves from eccentric compact binaries: Reduction in signal-to-noise ratio due to nonoptimal signal processing
Inspiraling compact binaries have been identified as one of the most
promising sources of gravitational waves for interferometric detectors. Most of
these binaries are expected to have circularized by the time their
gravitational waves enter the instrument's frequency band. However, the
possibility that some of the binaries might still possess a significant
eccentricity is not excluded. We imagine a situation in which eccentric signals
are received by the detector but not explicitly searched for in the data
analysis, which uses exclusively circular waveforms as matched filters. We
ascertain the likelihood that these filters, though not optimal, will
nevertheless be successful at capturing the eccentric signals. We do this by
computing the loss in signal-to-noise ratio incurred when searching for
eccentric signals with those nonoptimal filters. We show that for a binary
system of a given total mass, this loss increases with increasing eccentricity.
We show also that for a given eccentricity, the loss decreases as the total
mass is increased.Comment: 14 pages, 4 figures, ReVTeX; minor changes made after referee's
comment
On Properties of Vacuum Axial Symmetric Spacetime of Gravitomagnetic Monopole in Cylindrical Coordinates
We investigate general relativistic effects associated with the
gravitomagnetic monopole moment of gravitational source through the analysis of
the motion of test particles and electromagnetic fields distribution in the
spacetime around nonrotating cylindrical NUT source. We consider the circular
motion of test particles in NUT spacetime, their characteristics and the
dependence of effective potential on the radial coordinate for the different
values of NUT parameter and orbital momentum of test particles. It is shown
that the bounds of stability for circular orbits are displaced toward the event
horizon with the growth of monopole moment of the NUT object. In addition, we
obtain exact analytical solutions of Maxwell equations for magnetized and
charged cylindrical NUT stars.Comment: 16 pages, 3 figures, 1 tabl
Evolution of supermassive black holes
Supermassive black holes (SMBHs) are nowadays believed to reside in most
local galaxies, and the available data show an empirical correlation between
bulge luminosity - or stellar velocity dispersion - and black hole mass,
suggesting a single mechanism for assembling black holes and forming spheroids
in galaxy halos. The evidence is therefore in favour of a co-evolution between
galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass
subgalactic systems form first to merge later into larger and larger
structures. In this paradigm galaxy halos experience multiple mergers during
their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a
local galaxy has been made up by multiple mergers, then a black hole binary is
a natural evolutionary stage. The evolution of the supermassive black hole
population clearly has to be investigated taking into account both the
cosmological framework and the dynamical evolution of SMBHs and their hosts.
The seeds of SMBHs have to be looked for in the early Universe, as very
luminous quasars are detected up to redshift higher than z=6. These black holes
evolve then in a hierarchical fashion, following the merger hierarchy of their
host halos. Accretion of gas, traced by quasar activity, plays a fundamental
role in determining the two parameters defining a black hole: mass and spin. A
particularly intriguing epoch is the initial phase of SMBH growth. It is very
challenging to meet the observational constraints at z=6 if BHs are not fed at
very high rates in their infancy.Comment: Extended version of the invited paper to appear in the Proceedings of
the Conference "Relativistic Astrophysics and Cosmology - Einstein's Legacy
Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis
The Boubaker polynomials are investigated in this paper. Using Riordan
matrices analysis, a sequence of relations outlining the relations with
Chebyshev and Fermat polynomials have been obtained. The obtained expressions
are a meaningful supply to recent applied physics studies using the Boubaker
polynomials expansion scheme (BPES).Comment: 12 pages, LaTe
Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results
We present the first results from our Post-Newtonian (PN) Smoothed Particle
Hydrodynamics (SPH) code, which has been used to study the coalescence of
binary neutron star (NS) systems. The Lagrangian particle-based code
incorporates consistently all lowest-order (1PN) relativistic effects, as well
as gravitational radiation reaction, the lowest-order dissipative term in
general relativity. We test our code on sequences of single NS models of
varying compactness, and we discuss ways to make PN simulations more relevant
to realistic NS models. We also present a PN SPH relaxation procedure for
constructing equilibrium models of synchronized binaries, and we use these
equilibrium models as initial conditions for our dynamical calculations of
binary coalescence. Though unphysical, since tidal synchronization is not
expected in NS binaries, these initial conditions allow us to compare our PN
work with previous Newtonian results.
We compare calculations with and without 1PN effects, for NS with stiff
equations of state, modeled as polytropes with . We find that 1PN
effects can play a major role in the coalescence, accelerating the final
inspiral and causing a significant misalignment in the binary just prior to
final merging. In addition, the character of the gravitational wave signal is
altered dramatically, showing strong modulation of the exponentially decaying
waveform near the end of the merger. We also discuss briefly the implications
of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor
corrections onl
Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps
We study, analytically and numerically, phase locking of driven vortex
lattices in fully-frustrated Josephson junction arrays at zero temperature. We
consider the case when an ac current is applied {\it perpendicular} to a dc
current. We observe phase locking, steps in the current-voltage
characteristics, with a dependence on external ac-drive amplitude and frequency
qualitatively different from the Shapiro steps, observed when the ac and dc
currents are applied in parallel. Further, the critical current increases with
increasing transverse ac-drive amplitude, while it decreases for longitudinal
ac-drive. The critical current and the phase-locked current step width,
increase quadratically with (small) amplitudes of the ac-drive. For larger
amplitudes of the transverse ac-signal, we find windows where the critical
current is hysteretic, and windows where phase locking is suppressed due to
dynamical instabilities. We characterize the dynamical states around the
phase-locking interference condition in the curve with voltage noise,
Lyapunov exponents and Poincar\'e sections. We find that zero temperature
phase-locking behavior in large fully frustrated arrays is well described by an
effective four plaquette model.Comment: 12 pages, 11 figure
In vivo and in vitro synthesis of CM-proteins (A-hordeins) from barley (Hordeum vulgare L.)
CM-proteins from barley endosperm (CMa, CMb, CMc, CMd), which are the main components of the A-hordein fraction, are synthesized most actively 10 to 30 d after anthesis (maximum at 15–20 d). They are synthesized by membranebound polysomes as precursors of higher apparent molecular weight (13,000–21,000) than the mature proteins (12,000–16,000). The largest in vitro product (21,000) is the putative precursor of protein CMd (16,000), as it is selected with anti-CMd monospecific IgG's, and is coded by an mRNA of greater sedimentation coefficient (9 S) than those encoding the other three proteins (7.5 S). CM-proteins always appear in the soluble fraction, following different homogenization and subcellular fractionation procedures, indicating that these proteins are transferred to the soluble fraction after processing
Post-Newtonian SPH calculations of binary neutron star coalescence. II. Binary mass ratio, equation of state, and spin dependence
Using our new Post-Newtonian SPH (smoothed particle hydrodynamics) code, we
study the final coalescence and merging of neutron star (NS) binaries. We vary
the stiffness of the equation of state (EOS) as well as the initial binary mass
ratio and stellar spins. Results are compared to those of Newtonian
calculations, with and without the inclusion of the gravitational radiation
reaction. We find a much steeper decrease in the gravity wave peak strain and
luminosity with decreasing mass ratio than would be predicted by simple
point-mass formulae. For NS with softer EOS (which we model as simple
polytropes) we find a stronger gravity wave emission, with a
different morphology than for stiffer EOS (modeled as polytropes as
in our previous work). We also calculate the coalescence of NS binaries with an
irrotational initial condition, and find that the gravity wave signal is
relatively suppressed compared to the synchronized case, but shows a very
significant second peak of emission. Mass shedding is also greatly reduced, and
occurs via a different mechanism than in the synchronized case. We discuss the
implications of our results for gravity wave astronomy with laser
interferometers such as LIGO, and for theoretical models of gamma-ray bursts
(GRBs) based on NS mergers.Comment: RevTeX, 38 pages, 24 figures, Minor Corrections, to appear in Phys.
Rev.
- …