2,239 research outputs found
Reduction of Soil-Borne Plant Pathogens Using Lime and Ammonia Evolved from Broiler Litter
In laboratory and micro-plots simulations and in a commercial greenhouse, soil ammonia (NH3) and pH were manipulated as means to control soil-borne fungal pathogens and nematodes. Soil ammonification capacity was increased by applying low C/N ratio broiler litter at 1–8% (w/w). Soil pH was increased using lime at 0.5–1% (w/w). This reduced fungi (Fusarium oxysporum f. sp. dianthi and Sclerotium rolfsii) and root-knot nematode (Meloidogyne javanica) in lab tests below detection. In a commercial greenhouse, broiler litter (25 Mg ha−1) and lime (12.5 Mg ha−1) addition to soil in combination with solarization significantly reduced M. javanica induced root galling of tomato test plants from 47% in the control plots (solarization only) to 7% in treated plots. Root galling index of pepper plants, measured 178 days after planting in the treated and control plots, were 0.8 and 1.5, respectively, which was statistically significantly different. However, the numbers of nematode juveniles in the root zone soil counted 83 and 127 days after pepper planting were not significantly different between treatments. Pepper fruit yield was not different between treatments. Soil disinfection and curing was completed within one month, and by the time of bell-pepper planting the pH and ammonia values were normal
A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions
The sheer amounts of biological data that are generated in recent years have
driven the development of network analysis tools to facilitate the
interpretation and representation of these data. A fundamental challenge in
this domain is the reconstruction of a protein-protein subnetwork that
underlies a process of interest from a genome-wide screen of associated genes.
Despite intense work in this area, current algorithmic approaches are largely
limited to analyzing a single screen and are, thus, unable to account for
information on condition-specific genes, or reveal the dynamics (over time or
condition) of the process in question. Here we propose a novel formulation for
network reconstruction from multiple-condition data and devise an efficient
integer program solution for it. We apply our algorithm to analyze the response
to influenza infection in humans over time as well as to analyze a pair of ER
export related screens in humans. By comparing to an extant, single-condition
tool we demonstrate the power of our new approach in integrating data from
multiple conditions in a compact and coherent manner, capturing the dynamics of
the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Der algemainer tsionism = Bendrasai cionizmas : Kėdainiai, 1936
https://www.ester.ee/record=b5430178*es
Magnetization steps in Zn_(1-x)Mn_xO: Four largest exchange constants and single-ion anisotropy
Magnetization steps (MST's) from Mn pairs in several single crystals of
Zn_(1-x)Mn_xO (0.0056<=x<=0.030, and in one powder (x=0.029), were observed.
The largest two exchange constants, J1/kB=-18.2+/-0.5K and J1'/kB=-24.3+/-0.6K,
were obtained from large peaks in the differential susceptibility, dM/dH,
measured in pulsed magnetic fields, H, up to 500 kOe. These two largest J's are
associated with the two inequivalent classes of nearest neighbors (NN's) in the
wurtzite structure. The 29% difference between J1 and J1' is substantially
larger than 13% in CdS:Mn, and 15% in CdSe:Mn. The pulsed-field data also
indicate that, despite the direct contact between the samples and a
superfluid-helium bath, substantial departures from thermal equilibrium
occurred during the 7.4 ms pulse. The third- and fourth-largest J's were
determined from the magnetization M at 20 mK, measured in dc magnetic fields H
up to 90 kOe. Both field orientations H||c and H||[10-10] were studied. (The
[10-10] direction is perpendicular to the c-axis, [0001].) By definition,
neighbors which are not NN's are distant neighbors (DN's). The largest DN
exchange constant (third-largest overall), has the value J/kB=-0.543+/-0.005K,
and is associated with the DN at r=c. Because this is not the closest DN, this
result implies that the J's do not decrease monotonically with the distance r.
The second-largest DN exchange constant (fourth-largest overall), has the value
J/kB=-0.080 K. It is associated with one of the two classes of neighbors that
have a coordination number z=12, but the evidence is insufficient for a
definite unique choice. The dependence of M on the direction of H gives
D/kB=-0.039+/-0.008K, in fair agreement with -0.031 K from earlier EPR work.Comment: 12 pages, 10 figures. Submitted to PR
Quantum and approximation algorithms for maximum witnesses of Boolean matrix products
The problem of finding maximum (or minimum) witnesses of the Boolean product
of two Boolean matrices (MW for short) has a number of important applications,
in particular the all-pairs lowest common ancestor (LCA) problem in directed
acyclic graphs (dags). The best known upper time-bound on the MW problem for
n\times n Boolean matrices of the form O(n^{2.575}) has not been substantially
improved since 2006. In order to obtain faster algorithms for this problem, we
study quantum algorithms for MW and approximation algorithms for MW (in the
standard computational model). Some of our quantum algorithms are input or
output sensitive. Our fastest quantum algorithm for the MW problem, and
consequently for the related problems, runs in time
\tilde{O}(n^{2+\lambda/2})=\tilde{O}(n^{2.434}), where \lambda satisfies the
equation \omega(1, \lambda, 1) = 1 + 1.5 \, \lambda and \omega(1, \lambda, 1)
is the exponent of the multiplication of an n \times n^{\lambda}$ matrix by an
n^{\lambda} \times n matrix. Next, we consider a relaxed version of the MW
problem (in the standard model) asking for reporting a witness of bounded rank
(the maximum witness has rank 1) for each non-zero entry of the matrix product.
First, by adapting the fastest known algorithm for maximum witnesses, we obtain
an algorithm for the relaxed problem that reports for each non-zero entry of
the product matrix a witness of rank at most \ell in time
\tilde{O}((n/\ell)n^{\omega(1,\log_n \ell,1)}). Then, by reducing the relaxed
problem to the so called k-witness problem, we provide an algorithm that
reports for each non-zero entry C[i,j] of the product matrix C a witness of
rank O(\lceil W_C(i,j)/k\rceil ), where W_C(i,j) is the number of witnesses for
C[i,j], with high probability. The algorithm runs in
\tilde{O}(n^{\omega}k^{0.4653} +n^2k) time, where \omega=\omega(1,1,1).Comment: 14 pages, 3 figure
Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd
A theory for the equilibrium low-temperature magnetization M of a diluted
Heisenberg antiferromagnetic chain is presented. The magnetization curve, M
versus B, is calculated using the exact contributions of finite chains with 1
to 5 spins, and the "rise and ramp approximation" for longer chains. Some
non-equilibrium effects that occur in a rapidly changing B, are also
considered. Specific non-equilibrium models based on earlier treatments of the
phonon bottleneck, and of spin flips associated with cross relaxation and with
level crossings, are discussed. Magnetization data on powders of TMMC diluted
with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured
at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from
pairs is used to determine the NN exchange constant, J, which changes from -5.9
K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained
in the superconducting magnets are compared with simulations based on the
equilibrium theory. Data for the differential susceptibility, dM/dB, were taken
in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples
in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more
severe as x decreased, were observed. The non-equilibrium effects are
tentatively interpreted using the "Inadequate Heat Flow Scenario," or to
cross-relaxation, and crossings of energy levels, including those of excited
states.Comment: 16 pages, 14 figure
Electronic structure at InP organic polymer layer interfaces
Organic polymer layer/p-InP(100) interfaces have been investigated using surface photovoltage spectroscopy (SPS) in conjunction with ultraviolet-visible absorption spectroscopy (AS), infrared transmission spectroscopy (IRTS), time-resolved photoluminescence (PL), and x-ray photoemission spectroscopy (XPS). Prior to deposition, the etched p-InP(100) surfaces exhibited two gap states, attributed to excess surface P and adsorbed O, respectively. Postdeposition measurements show that N-containing layers suppress the former state at the interface, while the latter state is suppressed if S and F are present in the organic polymer film. A mechanism of these interfacial phenomena is suggested. (C) 1997 American Institute of Physics.70223011301
Dissipative collisions in O + Al at E=116 MeV
The inclusive energy distributions of fragments (3Z7) emitted in
the reaction O + Al at 116 MeV have been measured in
the angular range = 15 - 115. A non-linear
optimisation procedure using multiple Gaussian distribution functions has been
proposed to extract the fusion-fission and deep inelastic components of the
fragment emission from the experimental data. The angular distributions of the
fragments, thus obtained, from the deep inelastic component are found to fall
off faster than those from the fusion-fission component, indicating shorter
life times of the emitting di-nuclear systems. The life times of the
intermediate di-nuclear configurations have been estimated using a diffractive
Regge-pole model. The life times thus extracted (
Sec.) are found to decrease with the increase in the fragment charge. Optimum
Q-values are also found to increase with increasing charge transfer i.e. with
the decrease in fragment charge.Comment: 9 pages, 4 figures, 1 tabl
- …