494 research outputs found

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip

    Fixed points for weakly inward mappings in Banach spaces

    Get PDF
    AbstractS. Hu and Y. Sun [S. Hu, Y. Sun, Fixed point index for weakly inward mappings, J. Math. Anal. Appl. 172 (1993) 266–273] defined the fixed point index for weakly inward mappings, investigated its properties and studied the fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we continue to investigate boundary conditions, under which the fixed point index for the completely continuous and weakly inward mapping, denoted by i(A,Ω,P), is equal to 1 or 0. Correspondingly, we can obtain some new fixed point theorems of the completely continuous and weakly inward mappings and existence theorems of solutions for the equations Ax=μx, which extend many famous theorems such as Leray–Schauder's theorem, Rothe's two theorems, Krasnoselskii's theorem, Altman's theorem, Petryshyn's theorem, etc., to the case of weakly inward mappings. In addition, our conclusions and methods are different from the ones in many recent works

    NNgTL: Neural Network Guided Optimal Temporal Logic Task Planning for Mobile Robots

    Full text link
    In this work, we investigate task planning for mobile robots under linear temporal logic (LTL) specifications. This problem is particularly challenging when robots navigate in continuous workspaces due to the high computational complexity involved. Sampling-based methods have emerged as a promising avenue for addressing this challenge by incrementally constructing random trees, thereby sidestepping the need to explicitly explore the entire state-space. However, the performance of this sampling-based approach hinges crucially on the chosen sampling strategy, and a well-informed heuristic can notably enhance sample efficiency. In this work, we propose a novel neural-network guided (NN-guided) sampling strategy tailored for LTL planning. Specifically, we employ a multi-modal neural network capable of extracting features concurrently from both the workspace and the B\"{u}chi automaton. This neural network generates predictions that serve as guidance for random tree construction, directing the sampling process toward more optimal directions. Through numerical experiments, we compare our approach with existing methods and demonstrate its superior efficiency, requiring less than 15% of the time of the existing methods to find a feasible solution.Comment: submitte

    What is a retail brand - a systematic review of terms and definitions

    Get PDF
    Purpose – Although many scholars have acknowledged inconsistencies in the use of the retail brand term within the existing empirical literature, no one has conducted a systematic study to clarify the confusion of terms. Aiming at unifying the use of terms, this study aims to explore the terms that best express each retail brand concept, and discusses the definitions of proposed terms that can distinguish the connotation of different retail brand concepts. Design/methodology/approach – Through a systematic review, 463 articles were obtained, from which retail brand terms and their definitions were further extracted. Semantic analysis and content analysis were adopted to analyze terms and definitions, respectively. Findings – Semantically, the terms that best express four levels of retail brand concepts are own product brand, store brand, platform brand and retailer brand. Six key elements to distinguish different levels of a retail brand are identified through the content analysis of definitions, and on this basis, four proposed terms are defined. Originality/value – Noting that no study focuses on the conceptual confusion of retail brands in recent decades, the findings are expected to clarify the confusion of terms and unify the use of terms, hence facilitating the communication between scholars and the sharing of research results

    Control of complex nonlinear dynamic rational systems

    Get PDF
    © 2018 Quanmin Zhu et al. Nonlinear rational systems/models, also known as total nonlinear dynamic systems/models, in an expression of a ratio of two polynomials, have roots in describing general engineering plants and chemical reaction processes. The major challenge issue in the control of such a system is the control input embedded in its denominator polynomials. With extensive searching, it could not find any systematic approach in designing this class of control systems directly from its model structure. This study expands the U-model-based approach to establish a platform for the first layer of feedback control and the second layer of adaptive control of the nonlinear rational systems, which, in principle, separates control system design (without involving a plant model) and controller output determination (with solving inversion of the plant U-model). This procedure makes it possible to achieve closed-loop control of nonlinear systems with linear performance (transient response and steady-state accuracy). For the conditions using the approach, this study presents the associated stability and convergence analyses. Simulation studies are performed to show off the characteristics of the developed procedure in numerical tests and to give the general guidelines for applications

    On the Adversarial Robustness of Camera-based 3D Object Detection

    Full text link
    In recent years, camera-based 3D object detection has gained widespread attention for its ability to achieve high performance with low computational cost. However, the robustness of these methods to adversarial attacks has not been thoroughly examined. In this study, we conduct the first comprehensive investigation of the robustness of leading camera-based 3D object detection methods under various adversarial conditions. Our experiments reveal five interesting findings: (a) the use of accurate depth estimation effectively improves robustness; (b) depth-estimation-free approaches do not show superior robustness; (c) bird's-eye-view-based representations exhibit greater robustness against localization attacks; (d) incorporating multi-frame benign inputs can effectively mitigate adversarial attacks; and (e) addressing long-tail problems can enhance robustness. We hope our work can provide guidance for the design of future camera-based object detection modules with improved adversarial robustness

    Safe-by-Construction Autonomous Vehicle Overtaking using Control Barrier Functions and Model Predictive Control

    Full text link
    Ensuring safety for vehicle overtaking systems is one of the most fundamental and challenging tasks in autonomous driving. This task is particularly intricate when the vehicle must not only overtake its front vehicle safely but also consider the presence of potential opposing vehicles in the opposite lane that it will temporarily occupy. In order to tackle the overtaking task in such challenging scenarios, we introduce a novel integrated framework tailored for vehicle overtaking maneuvers. Our approach integrates the theories of varying-level control barrier functions (CBF) and time-optimal model predictive control (MPC). The main feature of our proposed overtaking strategy is that it is safe-by-construction, which enables rigorous mathematical proof and validation of the safety guarantees. We show that the proposed framework is applicable when the opposing vehicle is either fully autonomous or driven by human drivers. To demonstrate our framework, we perform a set of simulations for overtaking scenarios under different settings. The simulation results show the superiority of our framework in the sense that it ensures collision-free and achieves better safety performance compared with the standard MPC-based approach without safety guarantees
    • …
    corecore