123 research outputs found
GUESS:GradUally Enriching SyntheSis for Text-Driven Human Motion Generation
In this paper, we propose a novel cascaded diffusion-based generative
framework for text-driven human motion synthesis, which exploits a strategy
named GradUally Enriching SyntheSis (GUESS as its abbreviation). The strategy
sets up generation objectives by grouping body joints of detailed skeletons in
close semantic proximity together and then replacing each of such joint group
with a single body-part node. Such an operation recursively abstracts a human
pose to coarser and coarser skeletons at multiple granularity levels. With
gradually increasing the abstraction level, human motion becomes more and more
concise and stable, significantly benefiting the cross-modal motion synthesis
task. The whole text-driven human motion synthesis problem is then divided into
multiple abstraction levels and solved with a multi-stage generation framework
with a cascaded latent diffusion model: an initial generator first generates
the coarsest human motion guess from a given text description; then, a series
of successive generators gradually enrich the motion details based on the
textual description and the previous synthesized results. Notably, we further
integrate GUESS with the proposed dynamic multi-condition fusion mechanism to
dynamically balance the cooperative effects of the given textual condition and
synthesized coarse motion prompt in different generation stages. Extensive
experiments on large-scale datasets verify that GUESS outperforms existing
state-of-the-art methods by large margins in terms of accuracy, realisticness,
and diversity. Code is available at https://github.com/Xuehao-Gao/GUESS.Comment: Accepted by IEEE Transactions on Visualization and Computer Graphics
(2024
Research Progress of High Entropy Ceramic Materials
High-entropy materials (HEMs) have better mechanical, thermal, and electrical properties than traditional materials due to their special "high entropy effect". They can also adjust the performance of high entropy ceramics by adjusting the proportion of raw materials, and have broad application prospects in many fields. This article provides a review of the high entropy effect, preparation methods, and main applications of high entropy ceramic materials, especially exploring relevant research on high entropy perovskite ceramics. It is expected to provide reference for the promotion of scientific research and the development of further large-scale applications of high-entropy ceramic materials
Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna
The high cross-polarization of the microstrip integrated balun-fed printed dipole antenna cannot meet the demands of many engineering applications. This kind of antennas has high cross-polarization levels (about −20 dB). And we find that the high cross-polarization radiation is mainly produced by the microstrip integrated balun rather than the dipole itself. The very limited method to lower the cross-polarization level of this kind of antennas is to reduce the substrate thickness. In this paper, to improve the low cross-polarized performance, firstly, an equivalent model is presented to analyze the cross-polarization radiation. Secondly, a novel structure with low cross-polarization is proposed. The microstrip integrated balun is enclosed by a center slotted cavity. The E-field of the microstrip integrated balun is transformed parallel to the dipole arms by the slot, so the radiation of the cross-polarized component is suppressed. Measured results show that this structure can achieve a bandwidth wider than 40% while reducing the cross-polarization level to less than −35 dB within the frequency band
Comparative Studies on Microbial Community Structure and Production Performance of Jiang-Flavor Daqu in Different Areas of Maotai Town
The microbial community structure and diversity of Jiang-flavor Daqu (TS, WS, WM, MH and DJ) from different areas of Maotai town were analyzed by using the third-generation nanopore sequencing platform, and its physicochemical indexes and characteristic flavor substances were measured. The results showed that there were some similarities and differences between Daqu in different areas of Maotai town. In terms of microbial community structure, Bacillus, Saccharopolyspora, Weissella, Staphylococcus and Streptomyces were the common dominant bacterial genera in the five Daqu samples. Among them, Bacillus was the absolute dominant bacteria in MH and DJ. Aspergillus and Penicillium were the common dominant fungal genera, and the proportions of Lichtheimia and Saccharomycopsis in TS, WM and MH were significantly higher than those in DJ and WS. Compared with TS and WM, network correlation analysis showed that MH, DJ and WS had stronger interactions among dominant bacteria. In addition, redundancy analysis (RDA) showed that Weissella was positively correlated with esterification power, liquefaction power, saccharification power, acetic acid, ethyl acetate, ethyl lactate and n-pentanol. Lichtheimia was positively correlated with liquefaction power, saccharification power, acetic acid, isovaleric acid, 2,3-butanediol, phenylacetaldehyde and dibutyl phthalate. Saccharomycopsis was positively correlated with esterification power and ethyl acetate. Bacillus was positively correlated with 2,3,5,6-tetramethylpyrazine, propionic acid, isovaleric acid, dibutyl phthalate, 2,3-butanediol and phenacetaldehyde
Building dynamic population graph for accurate correspondence detection
AbstractIn medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph
Implementation of the CMOS MEMS Condenser Microphone with Corrugated Metal Diaphragm and Silicon Back-Plate
This study reports a CMOS-MEMS condenser microphone implemented using the standard thin film stacking of 0.35 μm UMC CMOS 3.3/5.0 V logic process, and followed by post-CMOS micromachining steps without introducing any special materials. The corrugated diaphragm for the microphone is designed and implemented using the metal layer to reduce the influence of thin film residual stresses. Moreover, a silicon substrate is employed to increase the stiffness of the back-plate. Measurements show the sensitivity of microphone is −42 ± 3 dBV/Pa at 1 kHz (the reference sound-level is 94 dB) under 6 V pumping voltage, the frequency response is 100 Hz–10 kHz, and the S/N ratio >55 dB. It also has low power consumption of less than 200 μA, and low distortion of less than 1% (referred to 100 dB)
Macrophage polarization states in atherosclerosis
Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis
Anomalous stopping of laser-accelerated intense proton beam in dense ionized matter
Ultrahigh-intensity lasers (10-10W/cm) have opened up new
perspectives in many fields of research and application [1-5]. By irradiating a
thin foil, an ultrahigh accelerating field (10 V/m) can be formed and
multi-MeV ions with unprecedentedly high intensity (10A/cm) in short
time scale (ps) are produced [6-14]. Such beams provide new options in
radiography [15], high-yield neutron sources [16], high-energy-density-matter
generation [17], and ion fast ignition [18,19]. An accurate understanding of
the nonlinear behavior of beam transport in matter is crucial for all these
applications. We report here the first experimental evidence of anomalous
stopping of a laser-generated high-current proton beam in well-characterized
dense ionized matter. The observed stopping power is one order of magnitude
higher than single-particle slowing-down theory predictions. We attribute this
phenomenon to collective effects where the intense beam drives an decelerating
electric field approaching 1GV/m in the dense ionized matter. This finding will
have considerable impact on the future path to inertial fusion energy.Comment: 8 pages, 4 figure
Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma
We report on charge state measurements of laser-accelerated carbon ions in
the energy range of several MeV penetrating a dense partially ionized plasma.
The plasma was generated by irradiation of a foam target with laser-induced
hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate
(CHO) foam of 2 mg/cm density, and -mm interaction
length as target material. This kind of plasma is advantageous for
high-precision measurements, due to good uniformity and long lifetime compared
to the ion pulse length and the interaction duration. The plasma parameters
were diagnosed to be T=17 eV and n=4 10 cm.
The average charge states passing through the plasma were observed to be higher
than those predicted by the commonly-used semiempirical formula. Through
solving the rate equations, we attribute the enhancement to the target density
effects which will increase the ionization rates on one hand and reduce the
electron capture rates on the other hand. In previsous measurement with
partially ionized plasma from gas discharge and z-pinch to laser direct
irradiation, no target density effects were ever demonstrated. For the first
time, we were able to experimentally prove that target density effects start to
play a significant role in plasma near the critical density of Nd-Glass laser
radiation. The finding is important for heavy ion beam driven high energy
density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference
- …