231 research outputs found

    WEARABLE PRIVACY PROTECTION WITH VISUAL BUBBLE

    Get PDF
    Wearable cameras are increasingly used in many different applications such as entertainment, security, law enforcement and healthcare. In this thesis, we focus on the application of the police worn body camera and behavioral recording using a wearable camera for one-on-one therapy with a child in a classroom or clinic. To protect the privacy of other individuals in the same environment, we introduce a new visual privacy protection technique called visual bubble. Visual bubble is a virtual zone centered around the camera for observation whereas the rest of the environment and people are obfuscated. In contrast to most existing visual privacy protection systems that rely on visual classifiers, visual bubble is based on depth estimation to determine the extent of privacy protection. To demonstrate this concept, we construct a wearable stereo camera for depth estimation on the Raspberry Pi platform. We also propose a novel framework to quantify the uncertainty in depth measurements so as to minimize a statistical privacy risk in constructing the depth-based privacy bubble. To evaluate our system, we have collected three datasets. The effectiveness of the proposed scheme is demonstrated with experimental results

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Compressive Channel Estimation and Multi-user Detection in C-RAN

    Full text link
    This paper considers the channel estimation (CE) and multi-user detection (MUD) problems in cloud radio access network (C-RAN). Assuming that active users are sparse in the network, we solve CE and MUD problems with compressed sensing (CS) technology to greatly reduce the long identification pilot overhead. A mixed L{2,1}-regularization functional for extended sparse group-sparsity recovery is proposed to exploit the inherently sparse property existing both in user activities and remote radio heads (RRHs) that active users are attached to. Empirical and theoretical guidelines are provided to help choosing tuning parameters which have critical effect on the performance of the penalty functional. To speed up the processing procedure, based on alternating direction method of multipliers and variable splitting strategy, an efficient algorithm is formulated which is guaranteed to be convergent. Numerical results are provided to illustrate the effectiveness of the proposed functional and efficient algorithm.Comment: 6 pages, 3 figure

    Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel

    Full text link
    This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message intended for all receivers and one confidential message intended for only one receiver and required to be perfectly secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast message, confidential message and artificial noise (AN), such that the achievable secrecy rate and multicast rate are simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the context of physical-layer service integration. Since this bi-objective optimization problem is inherently complex to solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant, we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal decomposable form, which is amenable to alternating optimization (AO). Then we compare these two scalarization methods in terms of their overall performance and computational complexity via theoretical analysis as well as numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure

    ATTITUDE CONTROL ON SO(3) WITH PIECEWISE SINUSOIDS

    Get PDF
    This dissertation addresses rigid body attitude control with piecewise sinusoidal signals. We consider rigid-body attitude kinematics on SO(3) with a class of sinusoidal inputs. We present a new closed-form solution of the rotation matrix kinematics. The solution is analyzed and used to prove controllability. We then present kinematic-level orientation-feedback controllers for setpoint tracking and command following. Next, we extend the sinusoidal kinematic-level control to the dynamic level. As a representative dynamic system, we consider a CubeSat with vibrating momentum actuators that are driven by small ϵ\epsilon-amplitude piecewise sinusoidal internal torques. The CubeSat kinetics are derived using Newton-Euler\u27s equations of motion. We assume there is no external forcing and the system conserves zero angular momentum. A second-order approximation of the CubeSat rotational motion on SO(3) is derived and used to derive a setpoint tracking controller that yields order O(ε2) closed-loop error. Numerical simulations are presented to demonstrate the performance of the controls. We also examine the effect of the external damping on the CubeSat kinetics. In addition, we investigate the feasibility of the piecewise sinusoidal control techniques using an experimental CubeSat system. We present the design of the CubeSat mechanical system, the control system hardware, and the attitude control software. Then, we present and discuss the experiment results of yaw motion control. Furthermore, we experimentally validate the analysis of the external damping effect on the CubeSat kinetics

    Utility-maximization Resource Allocation for Device-to-Device Communication Underlaying Cellular Networks

    Full text link
    Device-to-device(D2D) underlaying communication brings great benefits to the cellular networks from the improvement of coverage and spectral efficiency at the expense of complicated transceiver design. With frequency spectrum sharing mode, the D2D user generates interference to the existing cellular networks either in downlink or uplink. Thus the resource allocation for D2D pairs should be designed properly in order to reduce possible interference, in particular for uplink. In this paper, we introduce a novel bandwidth allocation scheme to maximize the utilities of both D2D users and cellular users. Since the allocation problem is strongly NP-hard, we apply a relaxation to the association indicators. We propose a low-complexity distributed algorithm and prove the convergence in a static environment. The numerical result shows that the proposed scheme can significant improve the performance in terms of utilities.The performance of D2D communications depends on D2D user locations, the number of D2D users and QoS(Quality of Service) parameters
    corecore