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ABSTRACT OF THESIS

WEARABLE PRIVACY PROTECTION WITH VISUAL BUBBLE

Wearable cameras are increasingly used in many different applications such as
entertainment, security, law enforcement and healthcare. In this thesis, we focus on
the application of the police worn body camera and behavioral recording using a
wearable camera for one-on-one therapy with a child in a classroom or clinic. To
protect the privacy of other individuals in the same environment, we introduce a new
visual privacy protection technique called visual bubble. Visual bubble is a virtual
zone centered around the camera for observation whereas the rest of the environment
and people are obfuscated. In contrast to most existing visual privacy protection
systems that rely on visual classifiers, visual bubble is based on depth estimation to
determine the extent of privacy protection. To demonstrate this concept, we construct
a wearable stereo camera for depth estimation on the Raspberry Pi platform. We
also propose a novel framework to quantify the uncertainty in depth measurements
so as to minimize a statistical privacy risk in constructing the depth-based privacy
bubble. To evaluate our system, we have collected three datasets. The effectiveness
of the proposed scheme is demonstrated with experimental results.

KEYWORDS: privacy protection, visual bubble, privacy bubble, wearable camera,
depth uncertainty, stereo quantization
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Chapter 1

Introduction

The increasing computation power of small embedded platforms and affordable

camera sensors have enabled many new and diverse applications ranging from enter-

tainment, security and law enforcement to healthcare.

Some of these applications have significant privacy concerns. For example, in the

past year, there have been strong calls for U.S. law enforcement officials to wear body

cameras and record their interactions with the general public [1–3]. The police worn

body cameras are intended to enhance police transparency and accountability, and

they can also protect police officers from false complaints. Such videos, if shared,

could offer a wealth of information to social scientists, journalists, and others. By

now, body cameras have been adopted by the majority of the law enforcement officials

in the UK and the US [4,5]. According to a nationwide survey conducted by the Major

Cities Chiefs Association and Major County Sheriffs’ Association, almost every large

police department plans to move forward with body-worn cameras [5]. Among these

police departments, 95 percent have either committed to body cameras or completed

their implementation. However, privacy concerns have been raised because of the lack

of guideline of the use for the cameras or the footage. The most important concern

is in the avoidance of recording sensitive locations and situations. While it is entirely

acceptable to record physical encounters between the police and individuals during

law-enforcement related activities, sensitive background environments like bathrooms,
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clinics, and schools should not be recorded [6]. Such concerns have already begun to

impede the popularity of body worn cameras. For example, a bill was introduced in

Minnesota to prohibit the use of police body camearas for one year [7].

Another example is video recording the behaviors of special-need children, es-

pecially their interactions with others in naturalistic environments like schools and

homes. They are highly valuable for diagnosis and treatment of various developmen-

tal disorders including autism and ADHD [8]. With the popularity of smartphone

cameras and wearable cameras, videos can be recorded in almost any environment,

capturing important intermittent behaviors that are difficult to observe during a brief

clinical visit. By sharing such videos, they have become an effective tool to facilitate

communication between families and professionals [9, 10]. However, their usages are

governed by a myriad of privacy laws including HIPAA [11] and FERPA [12] in the

US. Consent from bystanders is often difficult, if even possible, to obtain. Many

studies have found that privacy is among the top concerns when setting up cameras

in home and at school and sharing such videos online [13–16].

As a result, visual privacy protection has garnered a great deal of attention in

the last few years. A recent survey paper has provided a comprehensive overview

of different visual privacy protection technologies [17]. Most existing visual privacy

protection schemes rely on intelligent classifiers to identify sensitive information such

as faces or entire persons for protection. However, many of these classifiers are of

questionable reliability. Furthermore, these techniques require additional selection

mechanisms to differentiate target subjects, whose behaviors need to be recorded,

from others whose privacy needs to be protected [18]. Any misidentification of target
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subjects can defeat the entire purpose of privacy protection.

The main problem considered in this thesis is how to design robust privacy pro-

tection schemes for wearable cameras to protect unintended bystanders and private

environments. We propose a wearable privacy-enhanced camera that can be mounted

on an adult observer for video recording. The preliminary design is shown in Figure

1.1. The novel contribution of our proposed system is its use of a “visual bubble”

for privacy protection; the “visual bubble” defines an adjustable virtual zone around

the camera for recording. A key advantage of visual bubble is that it does not rely

on any human detector which can be unreliable. Instead, it uses pixel-based depth

measurement which can be estimated with high enough fidelity for privacy protection.

The popular Kinect 2 camera by Microsoft provides a very low-cost solution for such

an application. Using a Kinect camera, we can easily demonstrate a visual bubble

by selectively applying obfuscation on the color pixel based on its depth value. An

example is shown in Figure 1.2.

On the other hand, the Kinect camera is not portable and does not work well

in outdoor environments. Among all depth sensing technologies including time-of-

flight, structured-light and stereo, the stereo camera provides the most versatile form

of recording - it can cover a long distance and be used under a wide range of il-

lumination from bright outdoor sunlight to dim indoor light. Also, its reliance on

simple color cameras implies the highest resolution, the smallest size, and the lowest

cost. The downside is that stereo cameras are not as accurate as other depth sens-

ing technologies [19]. Thus, it is imperative to address the accuracy issues of stereo

vision systems in order to use it for privacy protection. In this thesis, we propose

3



Figure 1.1: Wearable privacy camera

Figure 1.2: Privacy bubble implemented with Kinect 2 camera

an embedded design of privacy-enhanced wearable stereo cameras using embedded

cameras on the popular Raspberry Pi platform [20]. In our design, the depth mea-

surement is based on disparity estimated by a stereo matching algorithm and we have

systematically compared different state-of-the-art stereo matching algorithms for our

target application. Furthermore, we propose a statistical framework to quantify the
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uncertainty of the depth measurement and create the visual bubble by minimizing a

statistical privacy risk so as to satisfy the more conservative requirement of privacy

protection.

The rest of the thesis is organized as follows. In Chapter 2, we review related work

about visual privacy protection. Additionally, traditional and some state-of-the-art

stereo matching algorithms will be reviewed. We propose a distance based privacy

protection technique in Chapter 3. We also develop the framework of analyzing the

uncertainty in stereo-depth measurement and describe the privacy bubble system

based on the probability framework. We present our hardware implementation and

experimental results in Chapter 4. Chapter 5 concludes the thesis and discusses future

work.
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Chapter 2

Related Work

With the pervasiveness of surveillance and smartphone cameras, visual privacy

has attracted much attention in recent years [17]. In this chapter, visual privacy

protection techniques will be briefly reviewed. Since the visual privacy protection we

are going to propose is based on distance estimated from stereo matching, traditional

and some state-of-the-art stereo matching algorithms will also be reviewed.

2.1 Review of visual privacy protection techniques

Visual privacy protection means protecting the confidentiality of the private in-

formation in images and videos from being revealed to the general public. Private

information or region of interest to protect varies based on different situations. It

can be a person’s face, facial expression, gait, credit card number, computer screen

or printed document and so on. Visual privacy protection involves filtering out or

scrambling the sensitive information; as with general privacy protection problems,

visual privacy protection needs to strike a balance between privacy protection and

utility. For example, if all of an image, not only the sensitive part, is scrambled, the

image is of no utility any more; however, if no privacy related processing is done,

private information will be revealed.

For visual privacy protection, there are techniques to prevent the private infor-

mation from being captured in the first place. For example, the BlindSpots system
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designed by Patel et. al. is able to locate the retro-reflective CCD or CMOS camera

lenses around a protected area and emits a pulsing light toward the detected lens,

spoiling the images that may be captured [21].

After the image or the video is captured, visual privacy protection mainly consists

of identifying the private information (or region of interest) and secure processing to

hide the private information. The method of detecting sensitive regions can be (1)

object-recognition based: e.g., facial recognition algorithms can be used to identify

individuals; (2) visual-marker based: e.g. [22] makes use of colored markers, such as

hats or vests, to identify the individuals who wish to remain anonymous; (3) gesture-

based: e.g., the invidual who wishes to be protected (or to be revealed) needs to

perform a specific gesture; (4) others: e.g., RFID [23] and biometric signals [18] can

be used to identify sensitive information.

Measures taken to hide private information include (1) blanking: totally removing

the region of interest; (2) filtering: e.g., applying Gaussian blurring or pixelation to

the region of interest; (3) encryption: regions of interest of an encrypted image cannot

be viewed by persons who do not have the decryption key; (4) abstraction: sensitive

image regions are replaced by bounding boxes; individuals to be protected are re-

placed by avatars, silhouettes or edges from an edge detector; (5) others: e.g., video

inpainting is used to fill the privacy region with the background; face-deindentification

can be done to change the face in a way such that the identity is consealed, but gender

and facial expression are preserved. There is a vast literature about visual privacy

protection; interested readers are referred to [17,24,25].
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2.2 Review of stereo matching

Stereo matching is one of the earliest approaches for depth measurements [26]. In

computer vison, the problem of stereo matching is well studied [26] and it continues to

be an active research area because of the challenges in finding stereo correspondence,

e.g., lack of texture, repetitive patterns, reflective surface and so on. There are quite

a few of review papers on stereo vision disparity algorithms as well [26–32].

Stereo matching algorithms can be categorized into sparse stereo matching and

dense stereo matching. Sparse stereo matching usually extracts feature patterns first

and then matches the feature correspondences. It generates only a sparse disparity

map with the advantages of more reliable match and less running time. However, with

the development of computing hardware and the need of new applications, most of the

modern stereo matching algorithms fall into the second category which is generating

a dense disparity map. Dense stereo matching algorithms generally perform (subsets

of) the following four steps [26]: (1) matching cost computation; (2) cost (support)

aggregation; (3) disparity computation/optimization; (4) disparity refinement. Most

of the algorithms take two or more already rectified stereo images as input, since

rectification as a preprocessing step restricts the search range for correspondence to

epipolar lines which greatly saves the computation effort.

In the step of computing matching cost, lots of different metrics have been used.

Among them, the most common ones are absolute intensity difference, the squared

intensity difference and the normalized cross correlation. According to different fea-

tures in the second and following steps, stereo matching algorithms are classified into

8



the local approach and the global approach.

In a local approach, also called window based approach, matching costs in a

support window are aggregated to reduce the impact of noises and get a more reliable

result. The support window can be a fixed size square or rectangle centered at the

pixel of interest. However, the support window of fixed size fails near disparity

discontinuity because the underlying assumption that pixels in the support window

have constant disparity is violated. Adaptive support window is able to overcome this

problem. In the third step of a local approach, usally a winner-take-all strategy is

used to determine the disparity of a pixel. Finally, refinements, such as interpolation,

subpixel enhancement, median filtering, and bilateral filtering, are done to improve

the disparity map.

On the other hand, a global approach treats the disparity assignment problem

in an energy optimization framework. The energy function to be minimized usually

consists of a data term and a smoothness term. Popular optimization methods are

dynamic programming, Markov random field, graph cut, belief propagation and so

on.

Real time stereo matching can be achieved with the help of Graphics Process-

ing Unit (GPU) and/or additional hardware such as field-programmable gate arrays

(FPGA) and application-specific integrated circuits (ASIC). Real time stereo match-

ing algorithms are mostly based on the local approach. On one hand, regular and

simple operations such as basic filtering can be easily and efficiently implemented with

computing hardware; on the other hand, parallelism can be better taken advantage of

in a window based approach on a GPU. Although these algorithms can achieve real

9



time speed, their performance usually suffers from limited computation time. Global

approaches are usually not implementable in real time because of its iterative nature.

Besides, the complicated optimization algorithm of a global approach also prevents

it from being efficiently implemented with parallel structure.

Readers can find a list of recently proposed stereo matching algorithms and their

performances from Middlebury website (http://vision.middlebury.edu/stereo/

eval3/) and KITTI stereo vision website (http://www.cvlibs.net/datasets/

kitti/eval_stereo_flow.php?benchmark=stereo). This thesis will look

more carefully at [33] and [34] because the these two algorithms are among the top

runners of the Middlebury and KITTI stereo vision score board, and their implemen-

tations are publicly available.

In [33], the authors developed a slanted plane model to jointly recover an image

segmentation, a dense depth map, as well as boundary labels. Their slanted plane

model algorithm is between 2 to 3 orders of magnitude faster than earlier slanted

models [35,36]. Besides, their model is shown to be insensitive of choice of parameters.

In [34], Zbontar et al. proposed to compute the matching cost by training a con-

volutional neural network to learn a similarity measure on small image patches. The

authors point out that the learning transfers well in the sense that the neural network

can be trained using one dataset and predict the results on a different dataset. As

an example, the validation error on KITTI 2012 is even lower when using Middle-

bury traning set than when using KITTI 2015 training set, although the KITTI 2015

dataset is closer to the KITTI 2012 dataset.
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Chapter 3

Visual Bubble System

Up to now, most work on visual privacy protection is done for single cameras. The

drawback of the aforementioned approaches of detecting sensitive regions in Chapter

2 is their reliance on image segmentation and subject and/or gesture identification

algorithms that may not be reliable enough for privacy protection. However, for some

applications concerning privacy, for example, police worn body cameras and behav-

iorial/educational observation of children with special need, subject identification is

not crucial.

This thesis proposes a distance based visual bubble for privacy protection. This

approach relies on stereo cameras as the capturing device. To the author’s best knowl-

edge, this is a novel approach for visual privacy protection in spite of its simplicity.

Visual bubble can be a depth bubble which is purely distance based, or a privacy

bubble which also considers the uncertainty of the distance/depth measurement. In

this chapter, we will first describe the depth bubble. We use stereo matching to

measure distance, or depth. In a privacy-concerned application, the reliability of

the depth measurement should be considered. Therefore, we develop a probability

framework for quantifying the uncertainty of depth measurement and describe the

privacy bubble system based on the framework. Finally, we describe the superpixel

technique that is used as a denoising post-processing in generating the visual bubble.

The functional block diagram of the visual bubble system is shown in Fig. 3.1.
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Figure 3.1: Visual bubble system

3.1 Depth bubble and depth from stereo

Depth bubble is a distance based visual privacy protection technique. It only

shows pixels within a prescribed depth range from the camera, and whatever falls

outside of the range will be filtered out. The effect of the depth bubble is like the

spotlight on a dark stage. The advantages of this approach are that pixel-based depth

measurement from stereo image pairs can be estimated with high enough fidelity for

privacy protection and the cost is low enough for the general public. This approach

relies on the assumption that the subject of interest is usually the person closest to

the observer and therefore, falls within the bubble.

The creation of depth bubble depends on estimating the depth Z for each pixel,

which is inversely proportional to its disparity value d, given the camera focal length

f and the stereo baseline B, that is,

Z =
fB

d
. (3.1)

Therefore, determining the disparity from stereo matching is a key step.

12



Figure 3.2: Quantization effect

3.2 Uncertainty in stereo depth measurement

Although stereo matching algorithms keep improving, a pixel’s disparity, or its

depth z estimation, inevitably involves errors and measurement uncertainty. For a

stereo matching algorithm which yields integer disparity values, the uncertainty of

the depth estimate mainly comes from two sources: (1) the uncertainty in the stereo

matching process due to matching ambiguity; (2) the uncertainty of disparity value

itself due to the digital nature of the imaging system. The quantization effect is

illustrated in Fig. 3.2. Assume the two red blocks on the image planes correspond

to the image pixel, any spacial point in the red region forms the same images on the

two image planes and has the same disparity. In other words, a pixel’s disparity error

is partly because of stereo correspondence mismatch due to the defect of the stereo

matching algorithm; even if the disparity value from the stereo matching algorithm

is correct, the disparity value also suffers from quantization. Therefore, this chapter

is mainly dedicated to proposing a framework to quantify the uncertainty in depth

measurement and developing an uncertainty-aware privacy bubble.

Based on the uncertainty sources of the depth measurement, our goal in this

section is to characterize the conditional probability density function (pdf) f(z|d)

13



(the probability density function of depth z given measured disparity d) in order

to determine how reliable the depth estimate is. We model f(z|d) based on its

relationship with two other pdf’s: f(z|dk) and P (dk|d) where dk with k = 0, 1, 2, ...

represents the ideal but unknown disparity, quantized due to the discrete nature of the

system. Using Bayes’ rule, these three pdf’s are related by the following relationship:

f(z|d) =
∑
k

f(z|dk)P (dk|d). (3.2)

3.2.1 Uncertainty due to quantization

Quantization error in stereo imaging system is analyzed in [37, 38]. This thesis

follows [37].

For standard stereo pinhole camera setup where the two camera image planes

are coplanar as shown in Fig. 3.3, assume f is the focal length of both cameras,

B is the baseline, δ is the image sampling interval. Assume a spatial point with

world coordinate (X, Y, Z) forms images on both image planes at PL and PR, whose

x-coordiates are xL and xR, respectively.

Due to the discrete nature of the imaging system, xL and xR suffer quantization

error up to ±1/2δ. With slight abuse of notation, let the random variable x̄L and

x̄R denote the unquantized x-coordiates of PL and PR. Define the random variable d̄

and z as follows,

d̄ := x̄L − x̄R,

z :=
fB

d̄
. (3.3)
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Figure 3.3: Stereo imaging model

Now assume x̄L and x̄R are independent and uniformly distributed. Given the

quantized image coordinates xL and xR, their conditional pdf’s are provided as fol-

lows:

f(x̄L|xL) = 1/δ, for xL −
δ

2
≤ x̄L ≤ xL +

δ

2
,

f(x̄R|xR) = 1/δ, for xR −
δ

2
≤ x̄R ≤ xR +

δ

2
.

Note that d is only available to us as a quantized value. As such, for consecutive

quantized disparity values dk := kδ, where k = 0, 1, 2, · · · ,m, d̄ are confined in the

interval [dk−1, dk+1], with a triangular-shaped pdf,

f(d̄|dk) =


1
δ2

(d̄− dk) + 1
δ
, for dk−1 ≤ d̄ ≤ dk,

− 1
δ2

(d̄− dk) + 1
δ
, for dk < d̄ ≤ dk+1.

(3.4)

Let

zk :=
fB

dk
, (3.5)

where k = 1, 2, · · · ,m.

15



It follows from (3.3), the conditional pdf of z given dk is

fZ(z|dk) =
fD̄(d̄|dk)
fB/d̄2

∣∣∣
d̄= fB

z

.

Substituting in (3.4), we obtain

fZ(z|dk) =

( 1
δ2

(fB
z
− dk) + 1

δ
)fB
z2
, for zk ≤ z ≤ zk−1,

(− 1
δ2

(fB
z
− dk) + 1

δ
)fB
z2
, for zk+1 ≤ z < zk.

(3.6)

Since the real depth z is confined within the range [zk+1, zk−1], we could use the

length ∆k of this interval to quantify the uncertainty of true depth:

∆k := zk−1 − zk+1 =
2

fB
z2kδ
− δ

fB

. (3.7)

Note that the farther the point is from the camera, the bigger ∆k is and the more

uncertain its true depth becomes. Also, a smaller baseline B means bigger depth

uncertainty. This is important to the design of a wearable stereo camera as the

baseline is highly constrained due to its compact size.

Now we have obtained the uncertainty of the depth measurement given the quan-

tized true disparity. The disparity value is “true” in the sense that we have assumed

perfect stereo matching in producing the disparity value d.

3.2.2 Uncertainty from stereo correspondence ambiguity

In a practical stereo matching system, false matches often occur due to varying

illumination, lack of texture of the scene, reflected surface and camera distortion,

etc. The uncertainty of the stereo matching process is modeled by P (dk|d), which is

the conditional probability of the quantized disparity dk corresponding to the perfect

disparity, given the measured disparity value d obtained from the stereo matching
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algorithm. One way to model P (dk|d) is to assume dk takes values centered at d with

variance σ2 proportional to the stereo matching cost.

The approach to estimate matching cost largely depends on the specific stereo

matching algorithm itself. Some stereo matching algorithms will give stereo matching

cost map as well as the disparity map. Simplistic error functions [39] and signal-to-

noise ratio [40] were proposed to model the matching cost. More recent works estimate

the matching cost using different machine learning techniques, ranging from linear

discriminant analysis [41] to random forest [42] and convolutional neural network [34].

In the next chapter, we show one approach to estimate P (dk|d) for the popular

semi-global matching algorithm [43]. As the approach is specific to the implementa-

tion of the algorithm, we defer the description to the next chapter.

3.3 Uncertainty aware privacy bubble

In this section, we show how the privacy bubble is generated using the estimated

f(z|d). In our target application, the subject that needs to be recorded is close to the

wearable camera while we want to protect the privacy of the rest of the environment.

Therefore, we could rely on the depth map and its uncertainty to segment the fore-

ground subject and generate a privacy bubble by obfuscating other pixels. Assume

we would like to generate a privacy bubble around the foreground subject within the

depth of zp. In order to generate the privacy bubble, we need to decide whether a

pixel with depth z should be shown or obfuscated. While the true z is unknown, we

have a measurement of disparity d. The conditional probability of the event z < zp
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given d can be numerically computed as follows:

P (z < zp|d) =

∫ zp

zmin

f(z|d)dz. (3.8)

To determine whether this pixel should be revealed, we rely on the following likelihood

test:

P (z < zp|d)

1− P (z < zp|d)
> S, (3.9)

where S > 0 is the privacy protection threshold. If (3.9) is satisfied, the pixel is

shown. Otherwise, it is obfuscated. The choice of threshold S reflects how stringent

the privacy requirement of the target application is. S � 1 will be very conservative

but may wrongly obfuscate part of the subject of interest.

Now, we can apply the results from Section 3.2 to evaluate (3.8). It can be

simplified with (3.2) and (3.6) as follows:

P (z < zp|d)

=

∫ zp

zmin

∑
k

f(z|dk)P (dk|d)dz

=
m∑

k=l+1

P (dk|d) + P (dl−1|d)

∫ zp

zl

f(z|dl−1)dz

+ P (dl|d)

∫ zp

zl+1

f(z|dl)dz, (3.10)

where zl ≤ zp < zl−1 and m is the upper bound of the disparity searching range.

3.4 Post processing with superpixel

The idea of superpixel was originally developed in [44]. By grouping pixels into

perceptually meaningful clusters, superpixel technique has been widely used in depth
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Figure 3.4: Superpixel example

estimation, segmentation, body model estimation and object localization [45]. One

example of superpixel is shown in Fig. 3.4.

In our system, we use the ERS algorithm [46] to segment the input frame into R

superpixels, where R is set large enough to ensure no semantic objects are lumped into

a single segment. The superpixel segmentation is formulated as a graph partitioning

problem. For a graph G = (V,E) and R superpixels, the goal is to find a subset

of edges A ⊂ E to approximate a graph Ḡ = (V,A) with R connected sub-graphs.

The vertex corresponds to a pixel in an image and an edge is formed by 4-connected

neighborhood with weights computed based on color-similarity between connected

vertices. The clustering objective function comprises of two terms: the entropy rate

H of the random walk on A and a balancing term B:

max
A⊂E

H(A) + λB(A) with NA ≥ R (3.11)

where NA is the number of connected components in Ḡ. The entropy term encourages

compact and homogeneous clusters, whereas the balancing term encourages clusters

with similar size. Finally, to overcome exact optimization difficulty, a greedy algo-
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rithm with an approximation bound of 1
2

is used to solve the problem.

Once the superpixels are computed, we use them to guide a simple denoising

procedure of the input matrix X, where X is the disparity map d in depth bubble

and the probability map P (z < zp|d) in privacy bubble. In the denoising step, we

first compute the average of the inputs over each superpixel and then replace the

individual input value at each pixel with the average of the superpixel to which

the pixel belongs. This is based on the assumption that color-consistent neighboring

pixels are more likely to have similar disparity or probability values. This assumption

holds for small neighborhoods and greatly improves the accuracy of disparity along

color edges. It is, however, important to set the number of superpixels R large enough

so that a large spatial object, which could have a large range of disparity values, will

not be accidentally clustered into a single superpixel.

In summary, this chapter proposed a distance based privacy protection technique

called visual bubble. Visual bubble can be either depth bubble or uncertainty aware

privacy bubble. Depth bubble can be generated by thresholding the depth map with

specified bubble range and depth is measured based on stereo matching. Further-

more, this chapter developed a framework to quantifying the uncertainty of depth

measurement from stereo matching. Built on this framework, an uncertainty-aware

privacy bubble was developed and finally the superpixel technique was proposed to

be used in visual bubble post-processing.
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Chapter 4

Hardware Implementation and Experiment

In this chapter, firstly, we describe the hardware implementation for the wear-

able visual bubble system. Secondly, we present the three datasets (image sequences)

we have collected for evaluation purposes. The first two datasets are captured by

our system. The third dataset is collected from Microsoft Kinect 2 RGB-D camera

sensors and therefore, there is depth information enabling quantitative evaluation.

Thirdly, we propose using semi-global (block) matching with superpixel (SGBM +

SUP) to generate the depth bubble, which is evaluated and compared with the classic

semi-global (block) matching (SGBM) [43] and other state-of-the-art stereo match-

ing algorithms. Additionally, we compare the depth bubble with uncertainty-aware

privacy bubble to illustrate the effectiveness of the uncertainty framework and our

proposed privacy bubble scheme. Some of the earlier results can be seen in [47].

4.1 Hardware implementation

We have built the wearable visual bubble system using Raspberry Pi Compute

Module (RPCM). The block diagram of the system is shown in Fig. 4.1. The wearable

system consists of the RPCM, an I/O board, two Pi cameras and a WiFi dongle

providing networking capability, as seen in Fig. 4.2. The RPCM is a small outline

dual in-line memory module (SODIMM) sized (6.5cm by 3cm) Raspberry Pi board

that contains the BCM2835 chip with 512MB RAM along with an onboard 4GB
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Figure 4.1: System Diagram

eMMC Flash memory. Integrated into the BCM2835 chip are a 700 MHz single-

core ARM1176JZF-S CPU and a 250MHz Broadcom VideoCore IV GPU. The Pi

camera has an image sensor with native resolution of 5 megapixel and is capable of

capturing 2592 × 1944 static images and 1080p30, 720p60 and 480p60/90 videos. In

our implementation, we will use the the resolution of 640 × 480. The onboard power

supply provides 5V DC power boosted from a 3.7V 2500mAh Li-Po battery. The

wireless interface features an Edimax 150 Mbps 802.11n WiFi USB adapter.

Figure 4.2: System components
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Figure 4.3: Hardware implementation

The prototype, housed in a 3D printed case and mounted on a chest strap harness,

is shown in Fig. 4.3. While the current prototype is quite large (11.7cm by 9.7cm

by 6cm), using a customized PC Board instead of the RPCM I/O board from the

Raspberry Pi development kit would make the system much smaller. The stereo

vision system can be controlled by a smart phone via an SSH connection.

The CAD model of the camera mount is shown in Fig. 4.4. The STL model of

the case is shown in Fig. 4.5.

Figure 4.4: Pi camera mount CAD model
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Figure 4.5: System case STL model

4.2 Dataset collection

We have collected 2 datasets using the system described in Section 4.1. No ground

truth depth images are captured. The image pairs are then rectified using extrinsic

parameters of the stereo camera acquired from camera calibration. Dataset 1 contains

76 pairs of stereo images (5-second video with 15 fps) in the outdoor environment.

Sample images are shown in Fig. 4.6. Note that only the left images are shown.

Figure 4.6: Dataset 1 sample (left) images

Dataset 2 contains 120 pairs of stereo images (8-second video with 15 fps) in the

indoor environment. Sample images are shown in Fig. 4.7.

In order to evaluate our proposed algorithms quantitatively, datasets with avail-

able ground truth depth are required. Currently, there are some publicly available

stereo datasets with ground truth disparity. The most notable ones are Middle-
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Figure 4.7: Dataset 2 sample (left) images

bury Stereo dataset (http://vision.middlebury.edu/stereo/data/) and

KITTI stereo vision benchmark dataset (http://www.cvlibs.net/datasets/

kitti/eval_stereo.php).

For a privacy protection scheme designed to be used in a privacy-concerned sit-

uation, it is better to be aware of the weakness and reliability of the protection

technique. For our case, we should take into consideration the uncertainty com-

ing from the stereo matching algorithms. This is especially true for wearable stereo

cameras, because the small baseline of wearable stereo cameras will enlarge the un-

certainty caused by disparity quantization. Since the aforementioned public datasets

were captured by stereo cameras with much larger baselines (for example, the stereo

camera baselines for Middlebury 2014 stereo dataset are around 150-240 mm while

our baseline is only 60 mm), using these datasets will not be able to most effectively

demonstrate the importance of the uncertainty analysis; therefore, we will generate

our own dataset (with ground truth depth) to test the proposed privacy protection

technique for our specific wearable camera system. Besides, it is always good to test

a system in a real situation where it shall be put into use.
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4.2.1 Dataset collection using Kinect 2

First, set up a pair of kinect 2 cameras as in Fig. 4.8 after calibrating each of them

to align the color sensor and depth sensor. The color sensor image planes are set to

be roughly coplaner. The basedline is set to about 60 mm, mimicking the baseline of

the Pi-stereo system. We have captured 100 frames of color and depth images from

both kinects simutaneously.

Figure 4.8: Stereo kinect setup

For Kinect 2, the resolutions for the captured color image and depth image cannot

be modified. The resolutions are 1920 × 1080 for color images and 512 × 424 for

depth images by default. Since the color images and the depth images have different

resolution, we need to call the MapColorFrameToDepthSpace() function in or-

der to generate a depth image whose resolution matches that of the color image. Then

color images and depth images are rotated and resized to mimic the images capu-

tured by Raspberry Pi cameras with 640 × 480 resolution. Finally, Bouguet’s stereo
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rectification algorithm with opencv implementation is used to rectify the stereo color

image pairs and depth images pairs. Sample color images (left image of the stereo

pair) are shown in Fig. 4.9.

Figure 4.9: Dataset 3 sample (left) images

4.2.2 Ground truth depth calculation

Stereo rectification as the preprocessing step for stereo matching can greatly re-

duce the work for searching for stereo correspondence because corresponding pixels

are warped to the same scan line of the images, i.e., they lie on the same row on the

image pairs. The effect of rectification is illustrated in Fig. 4.10. Rectified image

pairs can be treated as captured by a standard vitual stereo rig, as if in Fig. 3.3 in

Chapter 3. Since for the virtual rig, the camera orientations are different from the

original kinect depth sensor orientation, we need to calculate the ground truth depth

for the rectified color images.

Assume pinhole camera model. Let the world frame coincide with the camera

frame of the camera 1, it follows that for camera 1,

s


u

v

w

 = M1 [I | O]


X

Y

Z

1

 , (4.1)
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Figure 4.10: Stereo rectification

where s is the scaling factor, [u v w]T is the homogenous pixel coordinates, and

M1 :=


fx 0 cx

0 fy cy

0 0 1

 (4.2)

is the camera matrix for color camera 1.

For any spatial point P on the original left image corresponding to pixel coor-

dinates (i, j), which is the pixel at the j-th row and i-th column, we would like to

calculate its coordinates in the world frame. It follows that

s


i

j

1

 =


fx 0 cx

0 fy cy

0 0 1



X

Y

Z

 . (4.3)

Thus, 
X

Y

Z

 = s


fx 0 cx

0 fy cy

0 0 1


−1 

i

j

1

 = s


i−cx
fx

j−cy
fy

1

 . (4.4)

Therefore, s = Z, X = Z
fx

(i− cx) and Y = Z
fy

(j − cy).

From the stereo rectification implementation of opencv reading as
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stereoRectify(cameraMatrix[0], distCoeffs[0],

cameraMatrix[1], distCoeffs[1],

imageSize, R, T, R1, R2, P1, P2, Q,

CALIB_ZERO_DISPARITY, 0, imageSize,

&validRoi[0], &validRoi[1]);

R1 is the rectification transform (rotation matrix) for the first camera, denoted as

R1 :=


r11 r12 r13

r21 r22 r23

r31 r32 r33

 .
Assume in the rectified camera 1 frame, the coordinates of P are P ′l =

[
X ′ Y ′ Z ′

]T
,

it follows that 
X ′

Y ′

Z ′

 = R1


Z
fx

(i− cx)
Z
fy

(j − cy)

Z

 . (4.5)

Thus,

Z ′ = Z(
r31

fx
(i− cx) +

r32

fy
(j − cy) + r33). (4.6)

Let f ′ be the camera focal length and B be the baseline of the virtual rig. The

ground truth disparity of point P in the virtual rig is

d =
f ′B

Z ′
=

f ′B

Z( r31
fx

(i− cx) + r32
fy

(j − cy) + r33)
. (4.7)

Note that f ′ is directly available in the P 1 matrix (P 1 is the projection matrix for

the left image used in rectification, which is P1 in the above code snippet), f ′ = P 1
11.

Baseline B can be calculated from P 1 matrix as

B =
‖P 1

14‖
P 1

11

, (4.8)
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where ‖ · ‖ denotes the absolute value of (·), P 1
ij denotes the entry of matrix P 1 on

the i-th row and j-th colomn.

Sample depth images corresponding to the images in Fig. 4.9 are shown in Fig.

4.11. The valid depth is assumed in the range of [500, 4500] (unit: mm) and the

maximum value is set to be 5000 mm. The depth images are saved in CV 8U data

format.

Figure 4.11: Dataset 3 sample depth images

4.2.3 Validation of the ground truth depth

Method in the last subsection provides the ground truth depth, and therefore,

ground truth disparity for the left image of the color image pairs. Since we can do

the same thing and get the ground truth depth for the right image, the ground truth

depth image pairs can be compared to check the quality of the depth image.

Shown in Fig. 4.12 are a pair of grey image pairs (converted from color images)

and the corresponding depth images. A 11 x 11 pixel template is chosen in the left

image, marked by a red box in the image. Then template matching (using grey images

as input; therefore, grey images are shown in the figure) is done, the correspondence

template is found in the right image and verifed by inspection. Now depth values

from the two views at the same position marked with the red box are compared to

evaluted the accuracy of the depth measurement. Depth values from 5 image pairs
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and 5 templates on each image pair (totally 25 templates) are used, that is, 25 ×

121 depth value pairs. The average difference of the depth pairs is calculated to be

13.8324 mm, and the standard deviation of the depth difference of the depth pairs is

9.5411 mm. Since the depth resolution for depth data encoded in the CV 8U format

is 19.6 mm (0-5000 mm depth encoded as 255-0), the depth images acquired from

last subsection are accurate enough to be treated as ground truth depth.

Left image Right image

Left depth image Right depth image

Figure 4.12: Depth validation by comparing depth of matching templates

4.3 Experimental results

In our wearable visual bubble system, the stereo baseline B = 6 cm, the focal

length of the Pi camera f = 3.60 mm, and image sampling interval δ = 6 µm. With

the wearable system, we have created two datasets, one for outdoor environment and
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one for indoor environment.

For depth bubble application, we propose, first, use semi-global block matching

to generate disparity map; second, use superpixel technique as post-processing; and

finally threshold the disparity map to generate the depth bubble. In order to evaluate

our proposed algorithm, we compare it with 3 different stereo matching algorithms

(the common last step is thresholding the disparity map to generate depth bubble) :

(1) semi-global stereo matching (SGBM, without post-processing with superpixel); (2)

slanted plane model based segmentation algorithm (SPSEG) [33]; (3) convolutional

neural network (CNN) based learning algorithm [34].

For uncertainty aware privacy bubble, we propose, first, calculate the disparity

map using semi-global stereo matching; second, estimate the matching reliability and

generate the probability map; third, use superpixel to clean the probability map; and

finally, threshold the probability map to generate privacy bubble. We compare results

from this algorithm with our depth bubble algorithm, and show that it is beneficial

to consider uncertainty in the stereo-matching.

In order to compare the generated bubble image (both depth bubble and privacy

bubble) quantitatively, we compare the bubble mask image (recall that the mask

image is a binary matrix, with 1 denoting that the corresponding pixel should be

exposed, and 0 denoting that the corresponding pixel should be filtered out) with the

ground truth bubble mask image. The metrics we have used are precision (P ), recall

(R), F1 score and smoothness (S). Let TP = True positive, FP = False positive,

FN = False negative. (Note that, TP is also called hit; FP is also called false

alarm, which is the Type I error; FN is also called miss, which is the Type II error.)
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Precision, recall and F1 score are defined as:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2P ·R
P +R

.

F1 score is the harmonic mean of precision and recall and it is commonly used in

statistical analysis of binary classification as a measure of a test’s accuracy.

We have calculated the precision, recall and F1 score for each frame and computed

the arithmetic mean of precision, recall and F1 score of 41 frames in dataset 3 in which

frames a subject is in the visual bubble. Besides, we have also counted the number

of 8-connected components with size larger than 10 pixels as a quantitative results

for mask smoothness (S).

4.3.1 Depth bubble results

The depth bubble experimental results for two frames from dataset 1 are shown

in Fig. 4.13. The specified bubble depth range is 3.2 m.

The depth bubble experimental results for dataset 2 are shown in Fig. 4.14.

The specified bubble depth range is 3 m. In this set of results, the bubble images

using SPSEG and SGBM+SUP are good. The depth bubble using CNN algorithm

exposes lots of pixels which should not be shown, although it gives very smooth

bubble boundary.

For dataset 3, since ground truth disparity is available, we can compare the dis-

parity map generated from all the algorithms with the ground truth disparity. This

comparison is not based on a specific bubble depth; therefore, it indicates the overall

performance of these stereo matching algorithms.
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Original image 1 SGBM SPSEG

CNN SGBM+SUP

Original image 2 SGBM SPSEG

CNN SGBM+SUP

Figure 4.13: Depth bubble results: dataset 1

For each algorithm, we have computed the disparity for every frame in dataset 3.

Disparity error is calculated as the difference between the computed disparity with

the ground truth disparity. We then take the disparity errors for all frames and get

the histogram of the disparity errors, as shown in Fig. 4.15. We also compute the

mean and standard deviation of the disparity errors, as shown in Table. 4.1. From

34



Original image 1 SGBM SPSEG

CNN SGBM+SEG

Original image 2 SGBM SPSEG

CNN SGBM+SUP

Figure 4.14: Depth bubble: dataset 2

comparison, SPSEG and SBGM+SUP perform better.

The depth bubble experimental results for dataset 3 are shown in Fig. 4.16. The

specified bubble depth range is 2.5 m. Quantitative results using precision, recall, F1

score and smoothness as metrics are provided in Table 4.2.

As we can see from the qualitative and quantitative results, the SGBM algorithm
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SGBM SPSEG

CNN SGBM+SUP

Figure 4.15: Histogram of disparity errors for dataset 3

Table 4.1: Mean and standard deviation of the disparity errors for dataset 3

Algorithm mean (unit: pixel) standard deviation (unit: pixel)
SGBM [43] -2.5517 5.8845
SPSEG [33] 0.9699 3.5119
CNN [34] 1.9131 8.2517

SGBM+SUP -2.2258 3.8110

performs well, but the biggest problem is that the generated bubble image contains

lots of 8-connected components (‘small holes’) rendering the bubble not clean nor

smooth. This motivates our proposed depth bubble algorithm, which is based on

SGBM but uses superpixel to clean up the bubble image. The slanted plane model

based segmentation algorithm preserves connectedness of image segments very well

and generates clean bubble images. The CNN based learning algorithm, although
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Original image 1 SGBM SPSEG

Ground Truth Bubble CNN SGBM+SUP

Original image 2 SGBM SPSEG

Ground Truth Bubble CNN SGBM+SUP

Figure 4.16: Depth bubble: dataset 3

shows the highest recall rate, but also has the lowest precision. This can be easily

seen from the qualitative results where lots of pixels are falsely exposed, which may

cause a serious problem as far as privacy is concerned. Although CNN based learning

algorithm is among the top runners of stereo matching algorithms on the score board

of Middlebury stereo website, and it claims to have good performance in the transfer
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Table 4.2: Precision, recall, F1 score and smoothness of depth bubble masks

Algorithm P R F1 S
SGBM [43] 0.8556 0.9539 0.8992 26.0488
SPSEG [33] 0.8225 0.9750 0.8896 3.5854
CNN [34] 0.7295 0.9786 0.8343 12.4390

SGBM+SUP 0.9100 0.9034 0.9019 3.5366

learning settings where the validation error is computed on a different data set than

the one used for training, it has been shown in our experiment that its precision is the

lowest among the four algorithms we are comparing. The reason is that the neural

network we have used was trained using the Middlebury dataset which is greatly

different from the dataset we use for testing. Overall, our proposed SGBM with

superpixel algorithm has the highest F1 score and the smallest average number of

connected components.

4.3.2 Privacy bubble results

As seen in Chapter 3, our privacy bubble generation scheme depends on the

disparity uncertainty, or reliability estimate for a stereo matching algorithm. The

estimation approach will mostly depend on the specific stereo matching algorithm.

In this subsection, we first illustrate how we estimate the uncertainty of the disparity

map and demonstrate a privacy bubble with zp = 3.6m. Here, we choose privacy

protection threshold S = 4. Through experimental results, we then show the benefit

of adding uncertainty analysis in generating the visual bubble.

Using the Matlab implementation of the semi-global block matching algorithm [43],

the parameter ‘UniquenessThreshold’ indicates the uniqueness of a correspon-
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(a) Original image (b) Disparity map (c) reliabilityMap

(d) Probability map (e) Privacy bubble (f) Depth bubble

Figure 4.17: Privacy bubble generation

dence match. If the second smallest sum of absolute difference (SAD) value over

the whole disparity range is not larger than the smallest SAD by the extent spec-

ified by this parameter, the estimated disparity will be marked as unreliable. We

observed that when ‘UniquenessThreshold’ is set to 100, all of the stereo match

will be labeled as unreliable. As such, we have run a series of tests by varying

‘UniquenessThreshold’ from 0 to 90 with a stepsize of 15. By counting how

many times the computed disparity value is label as ‘reliable’, we could quantify the

reliability of the disparity map of each pixel into seven levels, with 7 being the most

reliable and 0 being not reliable at all. Figure 4.17(c) shows the reliability of the

disparity map, with the red end being the most reliable.

Next, for reliability level k, 1 ≤ k ≤ 7, assume the true disparity falls into one of

1 + 2(7− k) disparity bins and the probability mass function forms a triangle shape

with the given computed disparity value in the middle. We use (3.10) to calculate
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the overall probability of a spatial point being within the privacy bubble. Then,

the probability map is post-processed by the superpixel algorithm where superpixels

are formed based on original color image. The result is shown in Figure 4.17(d).

Figure 4.17(e) shows the actual privacy bubble based on our probability calculations

compared with the depth bubble generated by simply thresholding the depth map as

shown in Figure 4.17(f). One can see that in the depth bubble, there is a ‘hole’ above

the main subject because of the falsely computed disparity, as seen in Fig. 4.17(b).

However, the reliability of that disparity value is low; thus, corresponding pixels don’t

have high enough probability to enter the privacy bubble. Therefore, the ‘hole’ has

been filtered out in the privacy bubble.

The privacy bubble experimental results for two frames from dataset 1 are shown

in Fig. 4.18. The specified bubble depth range is 3.6 m and the privacy protection

threshold is S = 4. From comparing the depth bubble and privacy bubble, it can

be seen that privacy bubble with the uncertainty framework integrated can better

protect the unintended bystander.

The privacy bubble experimental results for two frames from dataset 2 are shown

in Fig. 4.19. The specified bubble depth range is 3 m and the privacy protection

threshold is S = 4. It is shown in Fig. 4.19 that a threshold can be chosen to make

the privacy bubble more conservative.

Table 4.3 provides the quantitative comparison between the 2.5 m depth bubble

and 2.5 m privacy bubble using the metrics of precision, recall, F1 score and smooth-

ness. The privacy bubble is only slightly better than the depth bubble, because of

the relative simple scene within the specified range.
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Original image 1 Disparity map Reliability map

Probability map Depth bubble Privacy bubble

Original image 1 Disparity map Reliability map

Probability map Depth bubble Privacy bubble

Figure 4.18: Privacy bubble results: dataset 1

As we can see from the experimental results, the proposed visual bubble (depth

bubble and privacy bubble) works equally well in both indoors and outdoors. Gener-

ally, the privacy bubble based on the probability framework outperforms the depth

bubble in terms of privacy protection. More results can be found at http://vis.

uky.edu/nsf-autism/wearable-privacy-cam/.
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Original image 1 Disparity map Reliability map

Probability map Depth bubble Privacy bubble

Original image 1 Disparity map Reliability map

Probability map Depth bubble Privacy bubble

Figure 4.19: Privacy bubble results: dataset 2

Table 4.3: Precision, recall, F1 score and smoothness of visual bubble masks

Algorithm P R F1 S
SGBM+SUP depth 0.9432 0.9216 0.9267 2.6585

SGBM+uncertainty privacy 0.9303 0.9451 0.9326 2.2195
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Chapter 5

Conclusion and Future Work

In this thesis, we have proposed a new visual privacy protection technique called vi-

sual bubble. A visual bubble can be a depth bubble which is purely distance based,

or a privacy bubble which also considers the uncertainty of the distance/depth mea-

surement. In a privacy-concerned application, the reliability of the depth measure-

ment should be considered. To minimize the statistical privacy risk in constructing

the depth-based visual bubble, stereo depth uncertainty has been considered in two

aspects: uncertainty from quantization and from imperfect stereo matching. We de-

velop a probability framework for quantifying the uncertainty of depth measurement

and describe the privacy bubble system based on the framework.

An implementation of the wearable privacy camera using Raspberry Pi Compute

Module has also been presented. In the software aspect, we propose using semi-

global block matching with superpixel (SGBM + SUP) to generate the depth bubble,

which is evaluated and compared with the classic semi-global block matching (SGBM)

and other state-of-the-art stereo-matching algorithms. Besides, we have compared

the depth bubble with uncertainty-aware privacy bubble. Experimental results have

demonstrated the effectiveness of the uncertainty framework and our proposed privacy

bubble scheme.

In addition to a visual bubble with a fixed radius, we have also experimented a

privacy bubble with varying depth based on the closest individual. Figure 5.1 shows
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the preliminary results of determining the radius by clustering pixel depths using the

K-means algorithm (K = 3) and assuming that the closest individual occupies the

closest cluster. The preliminary results are reasonably good though additional work

is needed to determine a more robust clustering scheme.

Original image sequences Visual bubble with varying depth

Figure 5.1: Varying-depth visual bubble
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