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ABSTRACT OF DISSERTATION

ATTITUDE CONTROL ON SO(3) WITH PIECEWISE SINUSOIDS

This dissertation addresses rigid body attitude control with piecewise sinusoidal
signals. We consider rigid-body attitude kinematics on SO(3) with a class of sinusoidal
inputs. We present a new closed-form solution of the rotation matrix kinematics. The
solution is analyzed and used to prove controllability. We then present kinematic-level
orientation-feedback controllers for setpoint tracking and command following.

Next, we extend the sinusoidal kinematic-level control to the dynamic level. As
a representative dynamic system, we consider a CubeSat with vibrating momentum
actuators that are driven by small e-amplitude piecewise sinusoidal internal torques.
The CubeSat kinetics are derived using Newton-Euler’s equations of motion. We
assume there is no external forcing and the system conserves zero angular momentum.
A second-order approximation of the CubeSat rotational motion on SO(3) is derived
and used to derive a setpoint tracking controller that yields order O(e?) closed-loop
error. Numerical simulations are presented to demonstrate the performance of the
controls. We also examine the effect of the external damping on the CubeSat kinetics.

In addition, we investigate the feasibility of the piecewise sinusoidal control tech-
niques using an experimental CubeSat system. We present the design of the CubeSat
mechanical system, the control system hardware, and the attitude control software.
Then, we present and discuss the experiment results of yaw motion control. Further-
more, we experimentally validate the analysis of the external damping effect on the
CubeSat kinetics.

KEYWORDS: attitude control, SO(3), sinusoidal control, CubeSat, vibrating mo-
mentum wheels

Author’s signature: Shaogian Wang

Date: October 25, 2018




ATTITUDE CONTROL ON SO(3) WITH PIECEWISE SINUSOIDS

By
Shaoqgian Wang

Director of Dissertation: T. Michael Seigler

Director of Graduate Studies: Alexandre Martin

Date: October 25, 2018




In loving memory of my grandpa and grandma



ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Dr. T. Michael Seigler for his
tremendous patience and full support, and for providing me with opportunities to
explore my interests. I also want to thank my co-advisor Dr. Jesse B. Hoagg for his
guidance and encouragement.

I am indebted to a lot of people who have helped me at some point in the CubeSat
attitude control project. I would like to thank my former colleague Joshua Evans
for helping me debug the CubeSat control circuit board and review the final PCB
design; Floyd Taylor and Herb Mefford from the machine shop, for helping with the
CubeSat prototype mechanical design and machining; Richard Anderson from EE
Department, for printing the test circuit board for the piezo driver and for showing
me how to use the reflow oven; Bradley Engel from Physik Instrumente (PI), for
discussing the air bearing issues; my colleague Roshan Chavan and undergraduate
assistant Katie Grimes for helping assembling the piezo actuators and conducting
some of the experiments; Todd Hastings and Brian Wajdyk from the Center for
Nanoscale Science and Engineering, for helping me set up the experiment platform
in the clean room; and Cynthia Lane for ordering the electronics without any fuss.
And there are many others.

I would also like to thank my colleagues/former colleagues, notably Amirhossein
Ghasemi, Brandon J. Wellman, Xingye Zhang, Daniel Poston, Thomas Kirven, Zahra
Abbasi, Roshan Chavan, Alireza Moosavi, Mohammadreza Kamaldar, Zack Lippay,
Chris Heinz, and Ajin Sunny. I have benefitted a lot from conversations with them,
and they have made the underground lab a nice place to study and work in. I also
want to thank my friends for keeping me outside of the lab, especially, Yulong Yao,
Xu Zhang, Yunqing Han, and Bo Tan. I would also like to thank Emma Xu for
keeping me company for a journey.

Furthermore, I would like to thank my parents and siblings for their love, care,
and support. Finally and most importantly, I would like to thank my grandpa and
my grandma. They built a place I call home. I dedicate this work to them.

il



CONTENTS

[Acknowledgments|. . . . . . . . . ... o iii
Contents|. . . . . . . . . iv
[List of Figures| . . . . . . . . . . ... vi
Listof Tables . . . . . . . . . . . ix
Notafionl . . . . . . . . . o X
[Chapter 1 Introduction|. . . . . . . . . . .. .. ... ... ... ..., 1
(1.1 The attitude control problem| . . . .. . ... ... ... ... .... 1
(1.2 Conventional attitude control approaches| . . . . . . . . ... ... .. 4
(1.3 Attitude control with piecewise sinusoids| . . . . . . . . .. ... ... 7
[[.4 Dissertation overviewl . . . . . . . . .. ... ... oL 9
[Chapter 2 Problem Description| . . . . .. ... ... ... ... ....... 12
2.1 _Rotation matrix and rotation vectorl. . . . . . .. ... ... ... .. 12
[2.2  Rigid body attitude kinematics on SO(3)| . . . . . . . ... ... ... 20
[2.3  Other attitude representations| . . . . . . . . . . . .. . . ... .... 22
(2.4 The CubeSat system| . . . . . . .. ... ... ... ... ... 25
2.5 Problem statement| . . . . . . .. ... L 35
[Chapter 3 Kinematic-Level Attitude Control| . . . . . . ... ... ... ... 39
[3.1  Exact solutions of the attitude kinematic system|. . . . . . . ... .. 39
[3.2  Controllability of the attitude kinematic system| . . . . . . . ... .. 47
[3.3  Setpoint tracking] . . . . . .. ... oo 51
[3.4 Command tfollowing|. . . . . . . ... ... ... .. ... ... .... 58

v



[Chapter 4 Dynamic-Level Attitude Control|. . . . . . . ... ... ... ... 68

[4.1  Dynamic-level attitude control using steady-state approximation| . . . 68

4.2 Related workl . . . . . .. .. 73
(4.3 Small angular velocity controls|. . . . . ... ... ... ... ... .. 7
[4.4  Dynamic level control|. . . . . . .. ... o000 80
[4.5 The effect of external damping. . . . . . . . ... ... ... ... .. 87
[Chapter 5 CubeSat Experiments|. . . . . ... ... ... ... ... ..... 94
[>.1 ~CubeSat mechanical system| . . . . . . ... ... ... ... ..... 94
[5.2  CubeSat attitude control system hardware| . . . . . . . ... ... .. 95
5.3 Cubebat attitude control softwarel . . . . . . ... ... ... ... .. 99
[>.4  Experiment setup| . . . . . .. ... 102
[5.5  Experiment results and discussion| . . . . . ..o o000 105
[Chapter 6 Conclusion and Future Work{. . . . . . ... ... ... ... ... 112
6.1 Conclusion|. . . . . . . . . ... 112
6.2 Future workl . . . . . . .. .. 114
Bibliography| . . . . . . . . . 116
VTEal . . . oo e 125



LIST OF FIGURES

[1.1 Rigid-body rotations are noncommutative.| . . . . . . . . . .. ... ... 8
[2.1 Inertial coordinate frame and body-fixed coordinate frame. . . . . . . . . 13
[2.2 The Cubedat system consists of a cubic rigid body and three pairs of |
| vibrating momentum wheels.|. . . . . ... ... 000000 26
[2.3  Free body diagram of the cube.| . . . . . . ... ..o 28
[2.4  Free body diagram of momentum wheels about the x, axis.|. . . . . . .. 30
3.1 The solutions R coincide with the pure rotation R at t, = k/10 s. The |
| maximum distance between R and R is smaller if ¢/w is smaller while Aty |
[ Is the samel . . . . . . . 45
[3.2  Open-loop sinusoidal control (3.24) yields R(1) =Re| . . . . . .. .. .. 50
[3.3  Open-loop sinusoidal control (3.24) yields R(0.8) = Re.| . . . . . . . . .. 51
[3.4  Setpoint tracking using Algorithm |3.14] with constant wg.|. . . . . . . . . 55
[3.5  Setpoint tracking using Algorithm |3.14f with constant At . . . . . . .. 56
[3.6  Setpoint tracking using Algorithm [3.20] with constant w, and At,.|. . .. 59
[3.7  Closed-loop command following example using Algorithm [3.23| with con- [
| stant wi but nonconstant Atr.|. . . . . . . ... L. 64
[3.8  Closed-loop command following example using Algorithm [3.27] with con- |
[ stant w, and Atp.. . .. 66
[4.1 Setpoint tracking using Algorithm 4.1l . . . . . ... ... ... ... .. 70
4.2 The rotation vector £ of R(c0) is 107 x [—0.2 0.1 1.8]", and its second |
| order approximation is 1072 x [00 1.3]*| . . . . .. ... ... ... ... 84
4.3 The sinusoidal control u (torque) induces a net rotation about body z axis.| 85

vi



i}

The angular velocity ) of the rigid body 1s not periodic because of the |

| transient response of the actuator dynamics.| . . . . . . . .. .. ... .. 85
4.5 Dynamic level control u(t) is designed to steer R(t) to Rq with O(e*) error.| 87
4.6 Angular velocity €)(¢) of the rigid body induced by the dynamic level |
| control w(t). | . . . . . .. 88
[4.7  Euler angles of the CubeSat system with sinusoidal internal torque inputs.| 89
4.8 Angular velocity €)(¢) of the rigid body induced by the dynamic level |
| control w(t). | . . . . . .. 90
[4.9  Angular velocities of the CubeSat and the momentum wheels.| . . . . . . 90
[4.10 Setpoint tracking using Algorithm 4. 14{. . . . . . . .. . ... . ... .. 93
[>.1 The experimental CubeSat system is constructed around a cubic frame|. 95
[5.2  (a) Piezoelectric bimorph actuators (Image courtesy of https://www.stemin- |
| c.com/); (b) Four actuators are installed on a 3D printed hub.| . . . . . . 95
[5.3  CubeSat attitude control system.| . . . . . ... ... ... ... ... .. 96
[5.4 DRV8662 application circuit with DAC input (this design is from the |
| DRV8662 manual).| . . . . ... ... .. 97
[5.5 (a) Nine degree-of-freedom Razor IMU (Image courtesy of https://www.spa- |
| rkfun.com/); (b) OpenLog data logger (Image courtesy of https://www.spa- |
| rkfun.com/); (c) Adafruit Bluefruit LE SPI Friend (Image courtesy of |
| https://learn.adafruit.com/).. . . . . . .. ... oo oL 98
0.6 Control board schematics) . . . . . .. ... ... 0oL 100
[>.7  The main control board houses the microcontroller and three piezo haptic [
| drivers, as well as connecting multiple modules as the mother board.| . . 101
[>.8  The spherical air bearing allows for three rotational degrees ot treedom. . 102
[5.9 3D model of the CubeSat mechanical system and the body-fixed frame |
| (1, Y, and 2, axes point in forward, right, and down direction).|. . . . . 103
[5.10 The experimental CubeSat system. |. . . . . . . ... .. ... ... ... 104

vil



[5.11 Open-loop control yields pure rotations about body-z axis.| . . . . . . . . 107
[>.12 Sinusoidal actuation voltage yields sinusoidal angular velocity along body [
[ xr and y axes. A small positive angular velocity along body z axis is |
| induced (likely by the unmodeled air dynamics of the air bearing).|. . . . 108
[>.13 Sinusoidal actuation voltage yields sinusoidal angular velocities along body [
[ x and y axes. A small negative angular velocity along z axis 1s induced |
| (likely by the unmodeled air dynamics of the air bearing).| . . . . . . .. 109
[5.14 A zoom in view shows that {); leads {25 by 90°. . . . . . . ... ... .. 109
[5.15 CubeSat tracks the yaw angle of —50 deg and —110 deg, which are marked |
[ with dashed lines.| . . . . . . . .. .. 110
[5.16 The yaw angle measurement error is smaller if smaller actuation voltage |
| 1s applied to the actuation system.| . . . .. .. ... ... ... ... . 110
[>.17 Sinusoidal actuation voltage yields sinusoidal angular velocities along body |
[ x and y axes. Nonzero {3 1s induced because of the external damping | 111
[5.18 A zoom in view shows that €}y leads {25 by 90°| . . . . .. ... ... .. 111

viil



LIST OF TABLES

[2.1 Properties of attitude representations| . . . . . . . . ... ... ... ...

[4.1  System parameters used in numerical simulations| . . . . . ... ... ..

X



NOTATION

R3x3

SO(3)
so(3)
tr

exp

ii, Ji, ki

1p, Jb, kb

set of real numbers

set of 3 by 3 real matrices

set of complex numbers

identity matrix in R3*3

3 dimensional special orthogonal group

set of 3 dimensional skew symmetric matrices
trace of a matrix

(matrix) exponential

(matrix) principal logarithm

angular velocity vector

components of angular velocity vector €2

angular frequency of sinusoids

element in the ith row and jth column of matrix A
natural bases of R?

skew-symmetric matrix form of ey, eg, e3

Frobenius norm of a vector or a matrix

2-norm of a vector or a matrix

cross product of two vectors

map from R? to so(3)

unit vectors corresponding to the coordinate axes of the inertial frame
unit vectors corresponding to the coordinate axes of a body-fixed

frame

[tk tht1)



Chapter 1 Introduction

Rigid-body attitude control problem has a long and rich history, and it remains an
active research topic due to important applications in aircraft, spacecraft, and under-
water vehicles [111]. The problem of interest in this dissertation is attitude control
of a free rigid body with applications to spacecraft systems. In this introduction, we
first review the attitude control problem and conventional attitude control techniques.
Next, we introduce an attitude control approach that uses piecewise sinusoid controls.
This nonconventional approach takes advantage of the noncommutative property of
rigid-body rotation and has some advantages for small-scale systems such as small

satellites. Finally, we provide an overview of this dissertation.

1.1 The attitude control problem

The attitude of a rigid body can be uniquely quantified by a 3 x 3 rotation matrix
R, which relates a body-fixed coordinate frame to an inertial coordinate frame. The

attitude kinematics of a rigid body are

R(t) = R(t)Q(t), (1.1)

where € is the rigid body’s angular velocity and Q) is the skew-symmetric representa-
tion of 2. The attitude kinetics of a rigid body can be derived from Newton-Euler’s

laws of motion, and are typically of the form

Qt) = f(Q,u), (1.2)

where f is a function of 2 and the control u. The attitude control problem is to

design u for the system ((1.1)) and (1.2)), potentially using feedback of R and/or €,



such that the attitude R achieves a desired behavior.

In this dissertation, we distinguish between kinematic-level control and dynamic-
level control. Kinematic-level control considers only the attitude kinematics and
treats €2 as the control input. Kinematic controllers can be used as inner-loop steering
controls and are also applicable for dynamic systems with high-bandwidth actuation
and negligible transient response. Conversely, dynamic-level control considers both
and . We refer to the system and as the rigid-body system.

Rotation matrices form the special orthogonal group SO(3), which is a three-
dimensional manifold. Since SO(3) is not a Euclidean space, attitude control is
frequently approached using various parameterizations of SO(3), such as Euler angles,
rotation vectors, unit quaternions, Rodrigues parameters, and modified Rodrigues
parameters. Since the dimension of SO(3) is three, at least three parameters are
needed to quantify attitude. A parameterization that uses three parameters is called
a minimum parameterization. Examples of minimum parameterization include Euler
angles, rotation vectors, and Rodrigues parameters.

In addition to the simpler treatment in a Euclidean space, attitude control using
parameterizations of SO(3) can have other advantages. For example, global asymp-
totically stabilization can be achieved with unit quaternions using continuous time-
invariant feedback control laws [4]. On the contrary, the best possible result for
attitude stabilization of the SO(3) kinematics using continuous time-invariant feed-
back is almost global stabilization [10,/12,/13]. This limitation occurs because such
control laws necessarily yield more than one equilibrium [10], regardless of the form
of the attitude kinetics (1.2).

However, it is well known that no parameterization of SO(3) is both unique and
global [10,/14]. Control laws based on a non-unique parameterization, such as unit
quaternions, can yield undesired behavior such as unwinding [6},|10]. In addition,

control laws based on a local parameterization cannot have global properties, such as



global asymptotic stability of the closed loop.

The rigid-body attitude kinematic equation is a drift-free system on SO(3),
which is also a matrix Lie group. The controllability of can be analyzed with
the Lie algebra rank condition [15]. The attitude kinetic equation includes
drift in general. The controllability of the rigid-body system can be analyzed using
the geometric control theory. In particular, [3] establishes sufficient and necessary
conditions for controllability of the rigid-body system in case of one, two and three
independent control torques.

Since the early 1970s, numerous attitude stabilization and tracking control laws
for fully actuated systems have been reported [4,10,/16H19]. In particular, [4] presents
a range of control laws including model independent, model dependent, and adaptive
control laws to address the attitude tracking problem. Attitude control for rigid
spacecraft with model uncertainty (e.g., unknown inertia, unknown momentum wheel
alignment) and external disturbance has also been addressed [20-22].

Attitude control for underactuated systems, that is, systems with fewer indepen-
dent controls than the dimensions of the system’s configuration space, has also been
studied extensively [3,/5,23-28]. As indicated by [3], under some conditions, the rigid-
body system is controllable with only one control torque. However, this case yields
substantial theoretical and practical difficulties. As such, most of the underactuated
systems considered in the literature have two independent torque inputs. It is proved
in [23] that a rigid body with only two controls cannot be locally asymptotically
stabilized with smooth time-invariant feedback controls since Brockett’s necessary
condition [29] for smooth feedback stabilization is not satisfied. Moreover, for under-
actuated systems, the time-invariant feedback controls that asymptotically stabilize
the rigid-body system to any equilibrium cannot even be continuous |24]. Piecewise
continuous time-invariant feedback control laws and time-varying control laws are pro-

posed in [5,26,27,30]. In particular, [27] presents nonsmooth bounded kinematic-level



stabilizing and tracking control laws for an axisymmetric spacecraft. A time-varying
feedback control law is constructed in [5] that locally asymptotically stabilizes an
equilibrium of the rigid spacecraft with two control torques.

More recent attitude-control research is focused on the distributed cooperative
attitude synchronization and tracking problem for multiple rigid bodies, which form
a communication network [9}/11,[31]. Distributed cooperative attitude control finds
its applications in cooperative sensing and actuation for multi-agent systems, such as

satellite swarms and multiple robotic manipulators.

1.2 Conventional attitude control approaches

Attitude control is a nonlinear control problem, which has been addressed using
various nonlinear control approaches, for example, linearization and feedback lin-
earization [4,|10},132-34], backstepping [8,35], adaptive control [20-22], sliding mode
control [34136,137], and optimal control [38,[39]. In this section, we review some of
these control approaches.

Linearization and feedback linearization are often used to design and analyze
control laws for attitude stabilization [4},[10,32-34]. These approaches consider the
rigid-body attitude kinetics together with the attitude kinematics based on a min-
imum parameterization of SO(3). Linearization near an equilibrium point is then
applied to obtain a linear system in RY. Linearization can also be carried out with
rotation matrices using the Lie-group properties of SO(3) [10]. For example, in [10],
a proportional-derivative (PD) feedback control law is designed for attitude stabi-
lization, and then the closed-loop system is linearized near the equilibria. The local
structure of the closed-loop system is then analyzed by calculating the eigenvalues
of the linearized system. In [33], two non-standard projective plane coordinates are
chosen as outputs. Then input-out linearization is carried out yielding a second-order

linear system, which gives rise to a control law that spin-stabilizes a satellite. Note



that for underactuated systems, linearization fails because the linearized system is not
controllable [3,[10]; center manifold theory [40] is often used together with feedback
linearization to analyze the zero dynamics [33].

Another common control approach uses PD state feedback [4,/17,[20,41]. For
example, [4] addresses the attitude tracking problem. By using the vector part of the
error quaternion and the relative angular velocity as feedback, the control law globally
asymptotically stabilizes the error attitude. A control Lyapunov function motivated
by the consideration of the total energy of the system is used to prove global stability.
In addition, by exploiting the geometric structure of SO(3), [17] presents a PD control
law for almost global attitude stabilization.

Attitude control laws can also be designed using passivity based approach. The
rigid-body rotational kinematics, in unit quaternion coordinates, are passive with an-
gular velocity as input and with the vector part of the unit quaternion as output [18].
Moreover, the attitude kinetics are passive with torque as input and angular velocity
as output [18]. By exploiting the passivity of the rigid-body system, [18] presents
control laws that address the setpoint tracking problem without the requirement of
angular velocity measurement.

It is also common to view the rigid-body system as a multi-loop structure, treating
the attitude dynamics as the outer-loop system and the attitude kinematics as the
inner-loop system. The kinematic-level control law is first designed by assuming the
angular velocity as the control input, and then the dynamic-level control law is derived
using backstepping or singular perturbation theory [8}35[/42]. In particular, [42] first
addresses the kinematic-level attitude control problem for an underactuated axisym-
metric spacecraft. By using a nonstandard attitude parameterization, [42] provides
small and bounded angular velocity controls for stabilization and tracking of the
spacecraft. Then, a dynamic-level control law is derived using singular perturbation

theory such that the actual angular velocity trace the desired angular velocity profile.



Another important control design approach is based on the exact or approximate
solution of the rigid-body system. Analytic solutions provide a detailed picture of the
transient and asymptotic behavior of a system. In particular, an exact (or approxi-
mate) solution of a closed-loop system can be used to establish asymptotic stability
of an equilibrium point and to determine the rate of convergence. In addition, if a so-
lution for an open-loop control is available, then a priori knowledge of the system can
be exploited to yield improved performance with reduced control effort. Intermittent
feedback corrections can also be implemented to reduce sensitivity to disturbance.

No general closed-form solutions exist for the rigid-body system (see [43-45] and
the reference therein). However, some specific solutions do exist and have proved to
be useful.

Closed-loop solutions can be obtained in the control design process, for exam-
ple, using exact linearization [46]. Some special feedback control laws also yield
exact solution of the rigid body system. For example, [19] presents some classes of
kinematic-level feedback control laws that admit a closed-loop solution. One inter-
esting example is the following. Consider the attitude kinematics (1.1)) with control
Q(t) = R(t)TP — PR(t), where P € R"™" is a positive semidefinite matrix with rank

n — 1 or n. Then, the solution of the system is
R(t) = (sinh(Pt) 4 cosh(Pt)R(0)) (cosh(Pt) + sinh(Pt)R(0))™",

which can be used to determine the region of convergence as well as the convergence

rate of R(t). As another example, if for all £ > 0,

Q(t) exp ( /0 tQ(T)dT> = exp ( /0 tQ(T)dT) Q(t),



then the solution of the attitude kinematics (|1.1]) is

The solution of the rigid-body system is also available if the control torque is
piecewise constant such that at any time only one components of €)(¢) is nonzero.
The solutions of the rigid-body system with piecewise constant control have been
used to specify attitude maneuver strategies for underactuated spacecraft in [24,33].
Recall that for underactuated systems, time-invariant feedback control laws that yield
a global asymptotically stable equilibrium are necessarily discontinuous.

An approximate solution of the rigid-body system with time-varying controls can
be obtained using averaging. For example, [47] studies the motion control (including
attitude control) for underactuated systems evolving on matrix Lie groups using
periodic forcing. By exploiting the Lie group structure, [47] derives an averaging
formula for the system response. A pth-order averaging formula is then used to
explicitly specify piecewise sinusoidal open-loop control to solve the motion planning

problem with O(eP) accuracy.

1.3 Attitude control with piecewise sinusoids

Rigid-body rotations are noncommutative. That is, the final orientation of a rigid
body that undergoes a sequence of angular displacements depends on the order of
that sequence. In contrast, rigid-body translation is commutative, since a rigid body’s
final position is independent of the order of the sequence of translations.

The noncommutative property of rigid-body rotation has interesting consequences
for attitude control. For example, Fig. shows a book and a reference frame that
is attached to the book. The book first rotates about its body xy, axis by 90 degrees,

then rotates about its body w, axis by 90 degrees, and finally rotates about its body



xy, axis by —90 degrees. After this sequence of three rotations, the book is rotated

90 degrees about its body z;, axis. Note that no rotations in this sequence are about

90—deg&
4{) Yo

rotation

(d) about zy,

Th
E () ——=
-90-degree

the body z, axis.

R 90-degree
rotation = tati

= b rotation
about xy, g y about yy,

5 b

<h,

Figure 1.1: Rigid-body rotations are noncommutative.

Attitude control using piecewise sinusoidal signal can be viewed as attitude actua-
tion with a sequence of infinitesimal rotations. Attitude control using sinusoids finds
one application in the shape-change actuation system, which can be used to control
the orientation of a system by altering the internal mass distribution (shape). Ex-
amples of shape-change actuation systems include moving masses, vibrating beams,
and oscillating flywheels [48-55]. For example, [48] uses a pair of internal vibrating
masses to change the orientation of an air spindle testbed; [49] uses electro-thermal
actuators to control the attitude of a micro-satellite.

This approach of attitude control with sinusoids is closely related to the control
strategies used for nonholonomic system motion planning. A nonholonomic system
is a system that has nonholonomic constraints, that is, constraint equations that

cannot be written as time derivatives of some function of the generalized coordinates.



Time-varying feedback controls, including the form of piecewise constant [56,57],
polynomial [56], and sinusoids [31,133,47,58,59], have been studied extensively in
the context of underactuated spacecraft attitude control and nonholonomic motion
planning, see [58,/60] and the references therein. In particular, sinusoidal controls
are commonly used in applications including wheeled vehicles [5§], underactuated
satellites [33,47], and underwater vehicles [47,61]. Optimality of sinusoidal controls
for a class of nonholonomic systems is addressed in [62].

Vibrational actuation systems that rely on this control approach may be applicable
for many small systems for which conventional actuation techniques are infeasible. For

example, a vibrational actuation system may be ideally suitable for small satellites.

1.4 Dissertation overview

In this dissertation, we address the attitude control problem using piecewise sinu-
soids. We consider a CubeSat system, which consists of a rigid body and oscillatory
momentum wheels, as a representative example of the attitude kinetics. We first de-
sign the kinematic-level piecewise sinusoidal control by following the solution-based
approach, and then we extend the control to the dynamic level. Note that the piece-
wise sinusoidal control laws proposed in this dissertation are not restricted to the
CubeSat system. Our control strategies may also apply to the attitude control for
other applications, such as underwater vehicles and micro-robots.

Here we note that attitude control is typically studied in the dynamic level, that
is, the control variable is a force, torque, or voltage, etc. However, we emphasize
that kinematic-level attitude control is of great value in its own right. Kinematic
controllers are used as inner-loop steering controls in various applications, such as
spacecraft, underwater vehicles, and wheeled robots [19,27,147,63].

Kinematic controls are applicable to dynamic systems with high-bandwidth ac-

tuation and negligible transient response [42,64]. For example, for a spacecraft with



“fast-enough” actuators, i.e., actuators with large bandwidth, a singular perturba-
tion approach can be used to implement the kinematic-level angular velocity com-
mand [42]. For underwater vehicle at low Reynolds number, the velocity of the vehicle
is able to track the force inputs without time delay [64].

Kinematic control can also be used for cases that dynamic effects are not negligible.
For example, kinematic controllers are used as subsystem controllers in nonlinear
control techniques such as backstepping, sliding mode control, and passivity-based
control [8}/18,34,136//46,(65]. Dynamic-level control can also be designed in a backward
manner. For example, [64] extends the kinematic-level control in [47] to the dynamic
level by deriving an approximate solution of the system response with sinusoidal
forcing. In addition, there is a large volume of literature on kinematic level control,
especially in the area of motion planning of nonholonomic systems.

The remaining of this dissertation is organized as follows. In Chapter [2, we first
present the definition and properties of the rotation matrices. Then we derive the
attitude kinematics on SO(3). Various parameterizations of SO(3) are briefly reviewed
and compared. The fact that there is no unique and global parameterization of the
SO(3) manifold motivates our consideration of attitude kinematics on SO(3). Then,
we derive the equations of motion of the CubeSat system. Finally, we formulate the
problems that are addressed in this dissertation.

In Chapter [3, we derive the exact closed-form solution of the attitude kinematics
R = RQ with a class of sinusoidal angular velocity inputs. By comparing this solution
with two pure rotations, we show that this class of sinusoidal inputs yield an average
net rotation like a spin. Then, we analyze the solution through averaging and through
motion decomposition. The controllability of the attitude kinematics is also discussed
in this chapter. Finally, we present kinematic-level attitude feedback controllers for
setpoint tracking and command following. In particular, we propose algorithms with

constant and nonconstant actuation frequency, constant and nonconstant update rate.
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Simulations are also performed to demonstrate the effectiveness of the controls.

In Chapter 4] we focus on the CubeSat system that is not subject to external
damping or gravity. Thus, the system conserves total angular momentum. First we
motivate the use of sinusoidal kinematic control on the dynamic level through an ex-
ample. Then, by exploring the properties of the CubeSat angular velocity induced by
the internal torques, we develop a second order approximation of the rotation matrix
trajectory. Based on this approximation, small (¢) amplitude piecewise sinusoidal
internal torques are designed to steer R on SO(3) with O(e?) error. Additionally, we
numerically investigate the effect of the external damping on the CubeSat kinetics,
and propose a heuristic setpoint tracking control algorithm for the case where the
CubeSat is subject to external damping.

In Chapter [5] we investigate the feasibility of the piecewise sinusoidal control
techniques using an experimental CubeSat system. We first present the design of the
CubeSat mechanical system, the control system hardware, and the attitude control
software. Then, we describe the experiment setup, present and discuss the experiment
results. Additionally, we experimentally validate the analysis of the external damping
effect on the CubeSat kinetics.

In Chapter [6] we summarize the contributions of this dissertation and discuss the

future work.
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Chapter 2 Problem Description

In this chapter, we define the attitude control problem that is addressed in this
dissertation. The configuration space of rigid-body attitude is the special orthogonal
group SO(3). We first review some important properties of SO(3). We also provide a
brief discussion of other attitude representations. Next, we present a dynamic model
for a CubeSat system, which consists of a rigid body and three pairs of oscillatory mo-
mentum wheels. This CubeSat system serves as a representative example of attitude
kinetics. Finally, we formulate the problems that are addressed in this dissertation.

We use the following notations. Let R be the set of real numbers, Z the set of
integers. Let R(;; be the element in the ¢th row and jth column of matrix R. Let tr
denote the trace of a square matrix. Let || - ||z be the 2 norm. If z € R? and ||z||s = 1,

then we call  a unit vector in R3.

2.1 Rotation matrix and rotation vector

The attitude of a rigid body is quantified by the orientation of a body-fixed coor-
dinate frame relative to an inertial coordinate frame. Let iy, jp,, and k;, be mutually
orthogonal unit vectors of the body-fixed frame, and i;, j;, and k; be mutually or-
thogonal unit vectors of the inertial frame, see Fig. 2.1} All coordinate frames in
this dissertation are right-handed. Let z = [z 25 23]T € R3, y = [y; v y3]" € R3,

z = [z1 22 z3)7 € R3 be such that

Iy = z1d; + @2 + w3k, (2.1)
Jb = yili + yaji + ysk, (2.2)
kb = Zlii + Zgji + Z3ki- (23)

12



rigid body

k,

Jb

ip

Figure 2.1: Inertial coordinate frame and body-fixed coordinate frame.
Informally, (2.1)—(2.3) can be written as

rr Y1 1
[ib Jb kb:| = [ii Ji ki:| T2 Yz Z2| - (2-4)

T3 Y3 Zz3

We define the rotation matrix

T Y1 oz

Ré Ty Y2 22 €R3X3.

T3 Yz Zz3

Since the coordinate frame unit vectors are mutually orthogonal, it follows that

where [ is the 3 x 3 identity matrix. It follows from (2.5) that R is nonsingular,

and R~!' = RT. Furthermore, since the coordinate frames are right-handed, det R =

T

2T (yxz) = Tz = 1, where x denotes the vector cross product. Therefore, R belongs

13



to the set

SOB) 2 {ReR*?: RR" = R"R=1,det R = +1}.

Conversely, it can be shown that every element of SO(3) is a rotation matrix. Thus,
rotation matrices form the set SO(3).

It can be verified that SO(3) forms a group, called the three-dimensional special
orthogonal group, with the matrix multiplication as the group operation [66]. Note
that rotation matrices are not commutative, that is, for Ry, Ry € SO(3), R1Ry #
RyR;.

The geodesic distance between R; € SO(3) and Ry € SO(3) is

tr R Ry — 1
d(Ry, Ry) = arccosrlf2 € [0, 7). (2.6)
We later show that d(-,-) is a metric on SO(3).
The set of skew-symmetric matrices in R3*? is so(3) & {S € R¥3 . § = — 5T}

For x = |1 25 3] € R3, define the map * : R?® — s0(3) by

0 —XI3 €T
T = x3 0 —I1
—X2 T 0

Note that the map * is one-to-one and onto, and 2y = x x y for all z,y € R3. We
also use the notation (x)" as a replacement for #. Define the map (-)¥ : so(3) — R?
to be the inverse of (-)". An important property of (-)" is given in the following

proposition.
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Proposition 2.1 ( [67] Lemma 2.1). If R € SO(3) and = € R3, then

(Rr)" = RZR". (2.7)

The set so(3) forms a vector space. A basis of so(3) is é;, é;, and é3, where
e1 =[100]T, e 2[010]%, and e3 = [0 0 1]T. Define E; £ é;, Ey £ &, and E3 = é3.
The Lie bracket [-, -] : s0(3) xs0(3) — so(3) on so(3) is defined by [A, B] = AB — BA.

The matriz exponential of B € so(3) is

| —

lB’“. (2.8)

I

o
=2
k=0

For all B € so(3) the sequence converges (absolutely) and thus the matrix
exponential is well defined. Let A € SO(3), then B € so(3) is a logarithm of A if
eB = A. Note that the logarithm of A € SO(3) exists ( [68, Proposition 11.4.2]) but
it is not unique.

Let A € SO(3), and assume that A has no real eigenvalues in (—o00,0]. Then,
there exists a unique B € so(3) such that its eigenvalues are elements of {z € C :
—m <Imz < 7} and e® = A. We call log A = B the principal logarithm of A.

The following result is known as Rodrigues’ formula, which provides an efficient

way to compute the matrix exponential of matrices in so(3).

Proposition 2.2. Let w be a unit vector in R?, and let € R. Then
e = I + (sinn)w + (1 — cosn)w?. (2.9)

Exponentials of skew symmetric matrices are orthogonal ( [67, Proposition 2.4]),
and the exponential map exp : so(3) — SO(3) is surjective ( |67, Proposition 2.5]).
Let R = exp(nw), where n € R, and w is a unit vector in R3. Then nw € R3 is

the rotation vector of R, where w is the axis of rotation and 7 is the rotation angle.
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This method of representing a rotation using a rotation vector is called the equivalent
axis representation. The rotation vector for a rotation matrix can be found using the

following proposition.
Proposition 2.3. Let R € SO(3) and A = {4 € 50(3) : e = R}.

(i) If d(R, ) = 0, then

A= {2kmi : k € Z,w € R® and |lwl, = 1}.

(i) If 0 < d(R,I) < , then

A ={(2k7 +n)w, 2kt —n)w’ : k € Z,

R32) — R(23)

trR—1 1
= arccos ——, W= m Rus) — R } (2.10)

Ry — Rpg)

(iii) If d(R,I) = 7, then

R(11)+1
2

A={(2k+1)m®, 2k +Dmo"  keZ, w= % }

Ri3)

| V2(Ran+1) |

The proof of Proposition follows from [67, Proposition 2.5]. Let R € SO(3)
and d(R,I) < m. Proposition implies that

0, ifd(R,I)=0,
log R = (2.11)

nb, if 0 < d(R,I) <,
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where 1 and w are given by (2.10). Note that log R is not defined if d(R,I) = m,
because if d(R,I) = 7, then —1 is an eigenvalue of R.

Next we show that d(-,-) is a metric on SO(3).

Definition 2.4. A metric on a set X is a function
d: X xX =R

having the following properties:
(i) d(z,y) > 0 for all x,y € X; equality holds if and only if z = y.
(ii) d(z,y) = d(y,z) for all z,y € X.
(iii) d(z,y) +d(y, z) > d(z, 2), for all z,y,z € X.

Lemma 2.5. Let R = ¢™ where n € [0,7] and w € R? is a unit vector. Then,
d(R, 1) =1. (2.12)

Proof. First, note that tr I = 3, tr @ = 0, and tr w? = —2. It follows from Proposi-

tion 2.2] that
tr e = tr (I +sinnw + (1 — cosn)w?®) =3 —2(1 —cosn) = 1+2cosn.  (2.13)

It follows from (2.13)) that

5 tr (em™)T —1 tr ™ — 1
d(R,I)=d(e™, 1) = arccos % = arccos rc% =1,

which confirms ([2.12)). O

Proposition 2.6. The geodesic distance d(-,-) defined by (2.6) is a metric on
SO(3).
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Proof. We show d(-,-) satisfies (i)-(iii) of Definition 2.4 Let Ry, Rs, Rz € SO(3).
First, the range of arccos implies that d(R;, R2) > 0. Also, d(R;, Rs) = 0 if and only
if tr RT Ry = 3, which holds if and only if RT R, = I, that is, R, = R,. Thus, (i) is
confirmed.

Next, it follows from (2.6) that

trRY Ry — 1 trRy Ry — 1
d(Ry, Ry) = arccos % = arccos % =d(Ry, Ry),

which confirms (ii).
We now show that d satisfies (iii). Assume A, B € SO(3). It follows from the

surjectivity of the exp map, we can write
A= 69151, B = 69252, (2.14)

where 01,0, € [0, 7] and £}, &, are unit vectors in R3. We first need to show that

t 0161 0262 _ 1
0, + 0y > arccos T 62 . (2.15)

It follows from Lemma [2.5| that (2.15) holds in the case that 6; = 0, or ; = 0. Also
note that (2.15)) holds trivially in the case that 6; 4+ 6, > .

We now assume 6; > 0, 05 > 0, and 6; 4+ 6, < 7. By applying Rodrigues’ formula,

66’151 =] +sin 9151 + (1 — COs 91)5%7

66252 = I —|— Sin 9252 + (1 — COS 92)53

18



By direct calculation it follows that

tr ef1816026 — (1 —cosb,)(1 — cos by)(£]&)? — 2sin 6 sin Oy (£1E)

+ (cos 6y + cos by + cos by cos ).
Note that the quadratic function f:[-1,1] = R
f(z) =(1 = cos ) (1 — cosby)x? — 2sin b, sin Oox + cos O + cos Oy + cos O cos Oy,

is minimized at x = 1. For the parabola opens upwards and the z-coordinate of the

vertex
sin 0, sin 0, _ cos 402 s
(I —cost)(1—cosf) sin%sin% -
Therefore,

tr ef1é1 026 > (1 —cosb)(1 — cosby) — 2sin 0y sin Oy + cos 0y + cos Oy + cos 61 cos by

= 2cos(f1 +6,) + 1,

which implies (2.15]) since 0 < 01 + 05 < 7.
Next, it follows from (2.15)) and Lemma [2.5] that for all A, B € SO(3),

d(A, 1)+ d(B,I) > d(I,AB),
which implies that

d(A,I)+d(B,I) > d(AB,I), (2.16)
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since d(I, AB) = d(AB, I). Therefore, for all Ry, Ry, R3 € SO(3),

d(Ry, Ry) + d(Ry, R3) = d(RiR; , I) + d(RyR3 , I)
=d(R\Ry RoR3, 1)

=d(Ry, Rs3),

which confirms (iii). Note that the first equality and the fourth equality follow from
d(A,B) = d(AB™,I) for all A,B € SO(3), and the second equality follows from
[.16). O

2.2 Rigid body attitude kinematics on SO(3)

Let re be a unit vector attached to the rigid body. The time derivative of r, with

respect to the inertial frame is [69, Eq. (3.3.16)]

Fe = W X I, (2.17)

where w is the angular velocity of the rigid body. Vector derivatives in this disser-

tation are always taken with respect to an inertial frame, unless noted otherwise. It

follows from ([2.17)) that

ib =w X ib, jb =w X jb, kb =w X kb. (218)

The time derivatives of the inertial frame unit vectors are zero, that is,

i=0, ji=0 k=0 (2.19)
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Differentiating yields
[ib i kb] — [ii i ki] R+l j kiR
Combining , , and yields
wx iy jb kol=[ Ji k&
Let the coordinates of w in the body frame be the components of €2, that is,
w=1[p jb ky
Substituting and [i; ji k] =[ip j» kp)RT into (2.21)) yields
Q=R"R.
Left multiplying both sides of by R yields

R = RQ.

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The kinematic system ([2.24)) is a left-invariant system on SO(3). See [15, Chapter

8] for the definition of left-invariant systems. One important feature of left-invariance

is that the relative motion is invariant with respect to the initial condition. Suppose

that R;(t) is the solution to ([2.24]) with initial condition R(0) = I. Then for arbitrary

initial condition R(0) € SO(3), the solution R(t) satisfies R(0)T R(t) = R;(t), that is,

the motion relative to R(0) is R;(t).
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2.3 Other attitude representations

The set of all possible attitudes of a rigid body is SO(3), which is not a Euclidean
space. Attitude control problems are commonly studied using parameterizations of
the SO(3) manifold. These parameterizations can be embedded in the standard R™
vector space, thus enabling the use of conventional analysis tools in linear systems
theory. Commonly used parameterizations, in addition to rotation vectors, include
Euler angles, unit quaternions, Rodrigues parameters (Gibbs vector), and modified
Rodrigues parameters (MRP). We briefly review some of the parameterizations.

Euler angles. The attitude of the rigid body with respect to an inertial frame
can be described using a sequence of three rotations about the coordinate axes of the
body-fixed frame. Specifically, if R € SO(3), then there exist 1,0, ¢ € [—m, 7] such

that

R = e¥FselB2p0bn (2.25)

The angles (v, 0, ¢) are called the 3-2-1 Euler angles, and they are commonly referred
to as yaw, pitch, and roll. There are other Euler angles representations, such as 1-2-3,
3-2-3, 2-1-3 Euler angles, which use different body-fixed rotation sequences [1].
Unit quaternions. Consider R € SO(3), which can be expressed as R =
exp(n), where w € R3 is a unit vector along the axis of rotation and n € R is

the rotation angle. The associated unit quaternion is defined as

q=qo+ qi+ qj+ gk,

or in vector form

T
q [QO q1 q2 Q3]

?
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where gy = cos(n/2), and [¢1  ¢2 ¢s]" = wsin(n/2). Unit quaternions form the set
S3ELr e R*: ||zl = 1},

Rodrigues parameters. Consider again R = exp(nw), where w € R? is a unit
vector and n € R. The Rodrigues parameters are the components of the vector (Gibbs

vector)
g= wtang c R

The modified Rodrigues parameters are the components of
p=w tang c R

A rigid body has three rotational degrees of freedom, thus requiring at minimum
three parameters to represent the orientation. Rotation vectors, Euler angles, Ro-
drigues parameters, and MRP use three parameters; therefore, they are referred to
as minimal representations. On the contrary, rotation matrices and unit quaternions
use nine and four parameters, respectively; therefore, they are not minimal represen-
tations.

It is a topological fact that singularities exist in any three-dimensional parameter-
ization of SO(3) [67]. The singularities refer to the points where the parameterization
that maps SO(3) to R? is undefined or not smooth. For example, for the rotation
vector representation, R = [ is a singularity. For the 3-2-1 Euler angle representation,
any R corresponding to § = +7/2 is a singularity.

No attitude parameterization is unique. For example, any R € SO(3) is repre-
sented by a pair of antipodal unit quaternions, that is, for R = exp(nw) both of the
unit quaternions g = =+ [cos(n/2) w7 sin(n/2)] " are valid representations. Neverthe-
less, the range of parameterization can be restricted to get a unique parameterization.

For example, it is possible to restrain the amplitude of the rotation vector to be no
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greater than 7 to get a unique parameterization provided that d(R,[) < m. As an-
other example, for MRP, ||p||2 < 1 can be enforced to get a unique parameterization
provided that d(R, ) < .

Not all parameterizations are global, and thus any kinematic level feedback con-
trol that uses local representation does not have a globally asymptotically stable
equilibrium. A global representation is one in which the associated rigid body kine-
matic (differential) equation is defined at all possible attitude points. For example,
unit quaternions provide a global parameterization. The unit quaternion kinematic

equation is

i=:Mq, (2.26)

where

0 —Q —Qy —Qj
Q2 0 Qs —0y
Qy —Q3 0 O
Q3 Qy =y 0

and Q =[Q; Q Q]" € R? is the angular velocity of the rigid body. As another

example, the kinematic equation using 3-2-1 Euler angles (¢, 0, ¢) is

U 0 singsect cos¢psect
0| =10 coso —sing | {2 (2.27)

b 1 singtanf cos¢otanf

The kinematic equation (2.27)) is not defined at § = +7/2, rendering the 3-2-1 Euler

angles a local representation. Rotation vectors are a global representation, although
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there is a singularity at R = I. In fact, the rotation vector kinematic equation is

: 1. 1—a(ll€ll) A2>
= (1424 2SI f2) 2.28
3 ( +58+ el ) Q, (2.28)

where ¢ is the rotation vector, and a(x) = (2/2)cot(z/2). It can be shown that at
¢ = 0 (the corresponding rotation matrix R = I), is well-defined.

Table summarizes the key properties of the attitude representations covered
in this section. It shows that none of the attitude parameterizations are global,
unique, and singularity free. Therefore, in this dissertation, we mainly use rotation
matrices to represent the attitude of a rigid body. Since unit quaternions are more
compact than rotation matrices, and calculating unit quaternions is computationally
efficient (due to the absence of trigonometric functions), we use quaternions primarily
in simulations.

Table 2.1: Properties of attitude representations

Attitude representation | No. of params. | Singularities | Unique | Global
Euler angles 3 Exist No No
Rodrigues parameters 3 Exist No No
MRP 3 Exist No No
Unit quaternions 4 None No Yes
Rotation vector 3 Exist No Yes
Rotation matrix 9 None Yes Yes

2.4 The CubeSat system

The attitude dynamics of a mechanical system consist of kinematic and kinetic
equations of motion. The attitude kinetics vary with the system’s inertial properties,
the actuation system, and external forcing. In this dissertation, we use a representa-
tive dynamic system to study the attitude control problem using piecewise-sinusoidal
controls. This representative system is a CubeSat, which is cube-shaped miniatur-

ized satellite with edge length 10 cm, that is equipped with a vibrational actuation
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system. As discussed in Chapter [T vibrational actuation systems have advantages
over conventional flywheel actuation systems.

As shown in Fig. 2.2] the CubeSat system consists of a cubic rigid body and three
pairs of vibrating momentum wheels. Each of the three momentum-wheel pairs is a
rigid body and their rotational axes coincide with the principal axes of the cube. We
use a pair of momentum wheels instead of a single momentum wheel for two reasons:
first, a momentum-wheel pair provides larger interactive torque between the wheels
and the cube when the wheels are actuated; second, the momentum-wheel pair is
mass balanced about the center of mass of the cube, thus simplifying the dynamics.
We label these three pairs of momentum wheels as momentum-wheel pair 1, 2, and 3,
as shown in Fig. Note that this actuation system is not meant to be a practical

design with regards to the size, quantity, and location of the momentum wheels.

Zb

~NE(AER

>

2 1,7 2 Yo

Figure 2.2: The CubeSat system consists of a cubic rigid body and three pairs of
vibrating momentum wheels.

Let O be the center of mass of the cube, whose mass denoted m, is uniformly
distributed. The coordinate axes iy, ji,, and k;, of the body-fixed frame coincide with

the principal axes of the cube. The moment of inertia tensor of the cube about O is
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I, = Liviy, + Ljujy + I3kpky, and the angular velocity of the cube is

W = Qlib + Q2jb + ngb. (229)

Let ¥, 8, and ¢ be the 3-2-1 Euler angles of the cube. Note that a rigid body has
three rotational degrees of freedom and three translational degree of freedom, and
the rotational motion is decoupled with the translational motion. Therefore, in the
attitude control problem, we can ignore the translational degrees of freedom and
assume the CubeSat rotates about its center of mass O. However, in this section, we
derive the equations of motion for a more general case and assume the CubeSat rotates
about a fixed point P, which is located by the vector rp,o = hky,. This generalization
is motivated by the experimental CubeSat system described in Chapter[5] Note that if
h = 0, then point P coincides with point O. We discuss more about this generalization
later in this section.

The total mass of each and every pair of wheels is m,,, and the centers of mass of
the wheel-pairs are all at point 0. The moment of inertia of any wheel-pair is I, about
the rotational axis and Iy about the other two perpendicular axes that go through
O. Let the relative rotation angles of the moment wheels with respect to the cube be
b1, B2, and (3. Each of the momentum-wheel pairs is connected with the cube by a
torsional spring and dashpot. The spring constant is K and the damping coefficient
is C'. Note that the interaction forces between a satellite and the momentum-wheel
actuators do not typically include the stiffness term K. However, the stiffness term
is an important component of the vibrating momentum wheel actuator dynamics.

The CubeSat system is in a gravity field with gravity constant g. The momen-
tum wheels are actuated by internal time-varying torques —uq(t)ip, —uq(t)jp, and

—ugz(t)ky. Equal and opposite colocated torques wui(t)iy, ua(t)jn, and ug(t)ky, are
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Figure 2.3: Free body diagram of the cube.

applied to the cube. We assume the external damping torque applied to the cube is
Td = —/LQlib - ,uQij - ,qukb, (230)

where p is the damping coefficient.

The constraint force and torque acting on the momentum-wheel pair 1 are denoted
—Fy 1 and =T yji, —T1 ,ky,. The constraint force and torque acting on the momentum-
wheel pair 2 are denoted —Fy o and —Thi, — 75 .ki,. The constraint force and
torque acting on the momentum-wheel pair 3 are denoted —F, 3 and —T5 i, — 715 yj.
Therefore, the constraint force and torque acting on the cube are Fy, = Fy 1 +Fy 2+
Fy3and Ty = (Tox + T3x)in + (Thy + T54)jb + (11, + T2,)ks. The constraint force
acting on the cube from point P is F,,. Therefore, the total torque acting on the

cube, excluding Ty, is

T, =(uy + KBy + CB1 + Tox + Ts)ip + (2 + KBy + CPy + Tiy + Tsy )i

—f- (U3 + Kﬁg, —|— 053 + TI,Z + TQ,z>kb‘ (231)

We draw the free body diagram of the cube in Fig. 2.3] Note that k; is the unit
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vector pointing upwards in the inertial frame, and it can be shown that
k; = (—sin )iy, + (sin ¢ cos 0)ji, + (cos ¢ cos 0)ky,. (2.32)
It follows from Newton-Euler’s equations of motion that
M, +T,+Ts=Lw+wx (Lw), (2.33)
where
M,, = (—hky) x (Fy — mcgk;) (2.34)
is the total moment acting on the cube about P,
L= (L+ meh?)ipiy + (Io + meh?)jnjn + Iskpky (2.35)
is the moment of inertia of the cube about P, and
w = Wiy + Ly, + sk, (2.36)
Substituting f and f into yields

(ur + KBy + OBy + Tox + Tox — i)in + (g + KBy + CBa + Thy + Tsy — 1)
+ (ug + K B3+ CBs + Ty + Top — 1Q2)ky, — hky X (Fy 1 + Fy s + Fy s — megks)
- ((11 +meh?)y + (Is — I — mch2)§22§23> i,
+ ((12 +meh?)$ + (I — I + mch2)9193) i+ (Igs'zg 4 (I — 11)9192) k.

(2.37)

Next, we examine the momentum-wheel pair 1. The free body diagram is shown
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Figure 2.4: Free body diagram of momentum wheels about the x}, axis.

in Fig. [2.4] where the resultant torque

T1 B —(Ul + Kﬁl + Oﬁl)lb — T17yjb — T17zkb-

(2.38)

Note that the center of mass of the momentum-wheel pair 1 is O, which is a fixed

point on the cube. The velocity of point O is

d
_E(

v —hky) = —hw X ky,
and the acceleration of point O is

a=v=—-hlwxk,+wx (wxky)].

Substituting (2.29) and ({2.36|) into (2.39) yields

a=(—hUQs — A )iy + (=AW + h)jy, + (hQ] + hQ3) k.

The angular velocity of momentum-wheel pair 1 is

wi = w + Piip,
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and its angular acceleration is

o = w + Blib + Blw X ib. (242)

Let Iy £ Liyiy + Lijujp + Iikpk, be the momentum of inertia tensor of momentum-

wheel pair 1. It follows from Newton-Euler equations of motion that

—Fy1 — mygki = mya, (2.43)

T1 = Ilal + wp X (Ilwl). (244)

Following the same procedure for the momentum-wheel pairs about the g, and z,

axes, we have

—Fy 2 — mygki = mya, (2.45)
Ty = Las + wy X (Thws), (2.46)
—Fy 3 — mygk; = mya, (2.47)
T3 = Izas + w3 x (Izws), (2.48)

where Ig é ]tibib + ]ajbjb + Itkbkb, 13 é Itibib + Itjbjb + Iakbkb, and

wo = w + Boji, (2.49)
w3 = w + Bsk, (2.50)
Qy = &+ Pajb + Fow X o, (2.51)
s = w + Bsky + Bsw X ky, (2.52)
Ty = —Toxdy, — (uz + Kfs + CPa)jy, — To ks, (2.53)
Ty = —Tsin — Tayjp — (us + KBs + CBs)ky. (2.54)
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It follows from ([2.40)), (2.43)), (2.45)), and (2.47) that

- Fw,l - FW,Q - Fw,3 - 3mwgki

= 3m, <(—h§2193 — B0y + (—h0Qs + A )js + (hQ2 + th)kb) . (2.55)

Combining (2.29), (2-36), (-41), 2-42), @.44), [©.46), [.43)—([2.54) yields

— (uy + KB1 + CB)ib — Thyjy — Tk = (1.1 + L51)iy
+ (([a — L) Qs + LIS + Ith> b+ ((It — L) — LI + [tQ3) ky,,

(2.56)
— Ty — (us + K Bo + CBa)ji — Tooky, = ((1t 1) — L + ml) i
4 (L + LBo)jy + ((1a LU+ L0 + mg) Ky, (2.57)
— Ty iy, — Tsyyn — (uz + K B3 + CBa)ky, = <(Ia — 1)20Q5 + 1,63Qs + 1@1) iy,

+ ((It — 1) 05 — ]aBISQl + ]tQ2> Jb+ (IaQ3 + ]aB?))kb‘ (2.58)

Now, it follows from (2.32)), (2.37)), (2.55)—(2.58) that the equations of motion of the

CubeSat system are

(I 4 I, + 21, + mh®) + LSy — L3 + 1.QsBs = (I — Is + mh?) Q4
— €2y — mghsin ¢ cos 6, (2.59)

(]2 + ]a + 211: + mh2)Qg + [aBQ + 139361 - Ianﬁg = (13 - Il - th)ngg

— 1€y — mghsin 6, (2.60)
(Is + I, + 21)Qs + L35 — I,Qs S + L Bo = (I — L) — puQs, (2.61)
Ly + LB+ OBy = —uy — Kfy, (2.62)
I.Qy + LBy + OBy = —uy — KB, (2.63)
L + LB + CBs = —uy — K s, (2.64)
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where m = m. + 3m,,. Define

0 Io Uy
Q2 |, BE|B]. vz |ul,
_93 B3 us
_[1 + I, + 21, + mh? 0 0
J £ 0 I + I, + 21, + mh? 0 : (2.65)
0 0 Is + I, + 21,

Then, the equations of motion of the CubeSat system can be written into the matrix

form,

JOU+ LB — JQUx Q+ LQ x B =—puQ + mghb, (2.66)

L(Q+ )+ Ch+ KB = —u, (2.67)

where b = [—sin¢cosf) —sinf O]T. Note that equations (2.66))(2.67)) combined
with the rigid body rotation kinematics (2.27)) form the complete set of system equa-

tions.

The dynamics (2.66)) and (2.67)) are rather general in that they cover various cases

of CubeSat systems:

(i) g > 0 corresponds to the case that the CubeSat is in a gravity field. We let

= 0 if the CubeSat is in the deep space.

(ii) © > 0 corresponds to the case that the CubeSat is subject to external viscous
damping. If we let © = 0 and g = 0, then there is no external damping and no

gravitational force, and the angular momentum of the system is conserved.

(iii) h > 0 corresponds to the case that the rotational center doesn’t coincide with

the center of mass of the CubeSat system. This case accommodates experimen-
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tal testing that is described in Chapter

We now let ¢ = p = h = 0, and consider a special case. In this case, there are
no external torques and no gravitational forces, and the total angular momentum is

conserved. Additionally, we assume the total angular momentum is zero, that is,

Iow + Ilwl + IQLUQ + Ig(.c)g = 0. (268)

Substituting (2.29)), (2.41)), (2.49)), and (2.50) into (2.68)) yields that

JQ+ LG =0, (2.69)

where h = 0 in the definition of J.

To simplify the kinetics further, we consider , and assume all the diagonal
components of the momentum of inertia matrix are equal to J4. Define J; £
I.(1 —1,/Jq), where I, > 0 is mass moment of inertia of a pair of momentum wheels
about the rotational axis.

Next, we use the characteristic time and characteristic frequency [70] that
and demonstrate to derive equations of motion in dimensionless form. It follows

from (2.24) (2.67) and (2.69) that the complete set of equations of motion of the
CubeSat system is

R(t*) = R(t)Q* (1Y), (2.70)
Ja + 5" =0, (2.71)
JB*+ CB*+ KB* = —u, (2.72)

where we have intentionally used variables with star to denote that the variables
are with dimensions. To express (2.70)—(2.72) in dimensionless form, we define the

characteristic frequency Qo 2 /K/J;, the characteristic angle 3y = 1 rad, and the
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characteristic torque ug = J4K By /I,. Let

A () 4 2 a P w2 u*
t = Qot*, Qo g = % e (2.73)
Then, it follows that — can be expressed as
R(t) = R(H)Q(1), (2.74)
kQ(t) 4+ B(t) =0, (2.75)
B(t) +2CH(t) + B(t) = —rul(t), (2.76)

where ¢ = C/(2v/JsK), and k = Jg/(1.5p). Note that in (2.70)—(2.72]) the derivatives
are taken with respect to t*, and in - ) the derivatives are taken with respect
to the dimensionless time ¢. This is the attitude dynamics model we focus on in this

dissertation.

2.5 Problem statement

In this dissertation, we consider the attitude control problem using piecewise

sinusoids. Specifically, we consider the CubeSat kinetics (2.75)) and (2.76)), and study

the setpoint tracking and command following problems. In addition, we consider the
CubeSat kinetics and , and study the external damping effect on the
CubeSat kinetics through numerical simulation.

This dissertation considers controls in the form of piecewise sinusoids. To facili-
tate the presentation, we use the following notations. Let all references to k in this
dissertation be for all k € N = {0,1,2,---}, unless otherwise stated. Let At > 0
be a time increment, and define the time ¢, 2 t,. + Aty, where tg = 0. We also

define the interval J;, 2 [ty, txy1). Finally, if f is a function of time ¢ > 0, then we let

fi & f(tw).
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Furthermore, let wy.c > 0. We call Q an admissible kinematic control if for all

t €Iy,
Q(t) = Sk [Ck(COS wkt)el + ck(sin wkt)eg + wdkeg] s (277)

where Sy, € SO(3), wy € (0, Wmax), and ¢, war € R. The control parameters in (2.77)

are Sk, Wk, Cr, war and Atg. For all t € J;, Q can be expressed as
Q(t) = Ql<t)€1 + Qg<t)€2 -+ Qg(t)eg,

where €, , Q3 : [0,00) — R are piecewise sinusoids.

We call u an admissible dynamic control if for all t € Jy,

3

u(t) = Z A sin(wt + or)e;, (2.78)

i=1

where Ay € R, w € (0,wmax), and ¢ € R. We note that the angular frequency
w of u(t) is constant. This is motivated by the actuator dynamics of the CubeSat
system. In particular, if the oscillatory moment wheels are driven at a frequency close
to the system’s natural frequency, then the cube would get bigger angular velocities,
yielding a higher control authority.

Next, consider the reference model

~

Rq(t) = Ra(t)Qu(t), (2.79)

where t > 0, Rq(t) € SO(3) is the command, R4(0) = R4y € SO(3) is the initial

condition, and €4 : [0,00) — R3 is the reference-model input. Define the command-
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following error

Z(t) & R (t)R(t), (2.80)

and the scalar performance

2(t) 2 d(R(t), Ra(t)) = d(Z(t), ). (2.81)

Next, we formulate the kinematic-level and dynamic-level attitude control problems.

Kinematic-level attitude control. Consider and , where t > 0,
R(t) € SO(3), R(0) = Ry € SO(3) is the initial condition, and Q(t) € R? is the
kinematic control. The objective is to design an admissible kinematic control €2 that
uses Z feedback and makes the performance z small in some sense.

Chapter [3 considers kinematic-level attitude control. We first analyze the solution
of and , and note that in the case of wyq # 0, the control design is
trivial. This is because we can always let ¢, = 0 and choose S; and wgq, properly
to achieve the control objective. We focus on the case that wq = 0. In particular,
section considers the setpoint tracking problem where Qq4(¢) = 0. In this case, the
objective is to make z converge to zero. For the general command-following problem,
the restriction prohibits perfect command following, and thus our objective is
approximate command following. This problem is considered in Section 3.4l

Note that the dimensionless attitude kinematic equation is identical with
(2.24). Therefore, in Chapter [3| we don’t differentiate dimensionless ¢ from ¢ with
dimension.

Dynamic-level attitude control. Consider (2.74)—-(2.76), where ¢ > 0, R(t) €
SO(3), k > 0, ¢ € (0,1), R(0) = Ry € SO(3), B(0) = fy € R? , and 3(0) = p € R? are
the initial conditions, and u(t) € R3 is the dynamic control. The objective is to design

an admissible dynamic control u that uses Z feedback and yields lim, ., R(t) = Ry,
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where Rq € SO(3) is the desired attitude.
The dynamic-level attitude control problem is covered in Chapter 4] Additionally,
we study the external damping effect on the CubeSat kinetics through numerical

simulations.
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Chapter 3 Kinematic-Level Attitude Control

In this chapter, we derive the exact analytic solution of the attitude kinematic
system R = RQ with a class of sinusoidal angular velocity inputs. We show that this
class of sinusoidal inputs yield an average net rotation like a spin. We then comment
on the controllability of the system. Finally, we present kinematic-level orientation
feedback controllers for setpoint tracking and command following.

In this chapter, and especially the next chapter, we make use of the big O notation,

which is defined as the following.

Definition 3.1. Big O notation. Let V be a set. Let ¢ € R, and 47, d5 be
functions mapping R to V. Let || - ||v, || - ||lr be norms on V and R respectively. If

there exist positive constant k; and ks such that

10:(e)lv < Eallda(e)llv, Vlellr < ke,

then, we write d;(e) = O(d2(€)).

3.1 Exact solutions of the attitude kinematic system

Consider the three-dimensional rotation system

R(t) = R(t)Q(t), (3.1)

and the admissible control

Q(t) = Sle(coswt)ey + c(sinwt)es + wqes), (3.2)

39



where t >0, ¢ > 0, w > 0, wqg € R, and R(0) = Ry € SO(3) is the initial condition.
We now provide a solution to and ( .
Let R = STRS, and it follows from (3.1)) that

R (t) = R(H)STQ()S = R'(£)(STQ(t))". (3.3)

Substituting (3.2)) into (3.3) yields for i € {1,2,3},

R’(il) = wa Ry — c(sinwt) R;3), (3.4)
R’(ZQ) = —wal;) + c(coswt) Ry, (3.5)
R’(B) = c(sinwt) R;;) — c(cos wt) Ry (3.6)

Differentiating ({3.6]) twice and using and (| . yields

Solving (3.7)) for R (i3) and using . 3.6 yields the solution to and ( .,

which is
R(t) = RyS®(t)ST, (3.8)
where
Ppy(t) = (w—i_—g}d)Q(cos wnt)(coswt) + “ :nwd (sinwyt)(sinwt) + C—;cos wt,
D(12)(1) w—;—gd)z(cos wyt)(sinwt) — “ :nwd (sinwyt)(coswt) + 5—22 sin wt,
Pi3)(t) = C(w:;?lwd) — c(w:}:zl ) COS wht,
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w + wq

Qo) (t) = (sinwyt)(coswt) — (coswyt)(sinwt),
W
D (22)(t) = (coswyt)(coswt) + d (sin wyt)(sinwt),
Wy
Do) (1) = —— sinwyt,
(23)(t) o sinw
Dy (t) = —C(w;;)d)(cos wyt)(coswt) — i(Sin wyt)(sinwt) + w cos wt,
Wq n n
c . . c(w + wq) . c(w+wa) .
P 39)(t) = w—n(sm wnt)(coswt) — w—§<COS wyt)(sinwt) + T sin wt,
wtwg)? A
D 35)(t) ( 2 ) + — coswyt,
where
wa 2 /(W +wa)? + 2. (3.9)
Next, define the pure rotation R : [0,00) — SO(3) by
R(t) £ RySexp <<\/(w +wq)? 42— w) tE3> ST (3.10)

Note that (3.10) is the solution of (3.1) with Q(t) = <\/(w T w1 & —w) Ses,
which is an constant control. The following result compares (3.8)) and (3.10)).

Proposition 3.2. Consider (3.8) and (3.10). Let At;, = 27/+y/(w +wa)? + ¢,
and let w 4+ wq > 0. Then,

Ryt = Rpoy = RS exp <<\/(w Fwa)?+c— w) AtkE;),) ST (3.11)

and

oyl

2 _ 2
supd(R(t), R(t)) = arccos wtwa) = c

. 3.12
tedy (w -+ wd)2 + 2 ( )
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Proof. 1t follows from (3.8) and (3.10]) that

tr RY(t)R(t) = tr ®T(t) exp <<\/(w +wq)?+ 2 — w) tE;»,)

2
IR S
wn

2c? 2 0 2
—l—%coswnt—i- (W + wa)w ;—(w—i—wd) .
wn wl’l

(3.13)

Since Aty = 2m/wy, it follows that t, = 27k/w,. Therefore, implies that
tr RT(tk)]:Z(tk) = 3, which implies that d(Rk,Rk) = arccos1 = 0, thus confirming
B11).

Next, note that
sup d(R(t), R(t)) = arccos nk; 1, (3.14)

tedy

where 1y, £ inf,q, tr RT(t)R(t). It follows from (3.13)) that tr RT(¢t)R(t) = f(cos wyt)/w?,
where f(z) 2 (wn — (w4 wa))” 22 + 222 + 2(w + wa)wn + (W + we)? is minimized on
the interval [—1,1] by = —1. Thus, tr RT(¢)R(t) is minimized by coswyt = —1,

which implies that

(wn — (w+ wd))2 — 22 +2(w+ wq)wy + (W+wq)? 3w+ wq)? — 2

77k prng wr21 = (w + wd>2 + CQ . (315)
Substituting (3.15)) into (3.14)) yields (3.12)). O

Now define another pure rotation R : [0,00) — SO(3) by

R(t) 2 RyS exp <<\/(w Fwa)? + - w) tEW> ST, (3.16)

where E,, £ (cEy + (w + wa)E3)/v/(w + wa)? + 2. Note that (3.16)) is the solution
of 1) with Q(t) = <\/(w +wq)?+ 2 — w) SEY, which is a constant control. The
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following result compares (3.8)) and (3.16). The proof is similar to that of Proposition
3.4 and is omitted.

Proposition 3.3. Consider (3.8)) and (3.16)). Let Aty = 27 /w, and let w+wq > 0.
Then,

Ryy1 = Ry = RpSexp <<\/(w +wq)?+c?— w) AtkEW> ST,

and

=

W+ wq)? — A
d(R(t), R(t)) = .
supd(F(0). (D) = avccos 2 24—

Note that the differences between Proposition [3.2] and [3.3] are that

(i) The pure rotations with which ({3.8)) is compared have different axes of rotation.
The axis of rotation for (3.16]) depends on ¢, w, and wq; while the axis of rotation
for (3.10)) doesn’t depend on ¢, w, or wy.

(ii) The time instances when the solutions coincide are different. In Proposition 3.2
At depends on ¢ and wq; while in Proposition Aty doesn’t depend on ¢ or

wq-

The following propositions are immediate results from Proposition and [3.3]

for sinusoidal controls where wq = 0.

Proposition 3.4. Consider (3.8]) and (3.10) where wq = 0. Let At = 27/vw? + ¢%.
Then,

Risr = Risy = RiSexp ((m — w) AtkEg) ST (3.17)
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and

sup d(R(t), R(t)) = arccos i

ted, w? + ¢2

(3.18)

Proposition 3.5. Consider (3.8) and (3.16) where wg = 0. Let Aty = 27/w.
Then,

Rii1 = Rpy1 = RpSexp <<\/m - w) AtkEw) St

and

w” —cC

oy

supd(R(t), R(t)) = arccos

2 2°
tedy w* +c

Example 3.6. Consider and , where wq = 0, w = 10v/27 rad/s and
c = 10v27 rad/s, and let Aty = 27/\/w? + 2 = 1/10 s. In this case, Aty = 1/10 s,
and Proposition implies that R(k/10) = R(k/10) and SUD;e, d(R(t), R(t)) =
7/2 rad, where 3, = [k/10, (k +1)/10).

Proposition also implies that if c/w is smaller while Aty = 1/10 s is the
same, then sup,;, d(R(t), R(t)) is smaller. Thus, we consider w = 10v/37 rad/s and
¢ = 107 rad/s, which implies that c/w = 1/v/3 and Aty = 1/10 s. Proposition
implies that R(k/10) = R(k/10) and SUDe, d(R(t), R(t)) = ©/3 rad, which is less
than the previous case. Figure shows the trajectory d(R(t), R(t)) for both cases of
clw. A

Now, we analyze the structure of the solution (3.8) by approximation and by

motion decomposition.
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Figure 3.1: The solutions R coincide with the pure rotation R at ty = k/10 5. The
maximum distance between R and R is smaller if ¢/w is smaller while Aty is the
same.

To this end, first we consider (3.1) and small control (3.2)) with ¢, = O(e) and
wa = O(€), where € > 0 is a small scalar. Note that w = O(1). Since Q(t) is periodic

with period T = 27 /w, we define

O 2 = /OT Q(r)dr =S {() 0 wd]T. (3.19)

By applying the classic averaging theory , we have the following proposition.

Proposition 3.7 (Leonard [71]). Consider (3.1) and (3.2)), where € > 0 is a small
scalar, ¢ = O(€), and wq = O(e). Let R(t) is the solution to (3.1) and (3.2), with
R(0) = Ry € SO(3). Let G 2 {R € SO(3) : d(R,Ry) < m}. Let RM(t) be the

solution to
R(t) = R(t)ay, (3.20)

with R (0) = R(()l), where 2,, is defined in (3.19)). If there exists b > 0, such that
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for all t € [0,b/¢], RD(t) € G, and if d(R\", Ry) = O(e), then for all t € [0,b/e],
d(R(t), RV (t)) = O(e).

Proposition indicates that the solution can be approximated with the
solution of the average dynamics (3.20) with O(e) error. That is, if ¢ = O(wg), the
dc component of {2 dominates the system response.

To be more precise, we decompose the motion into two parts, an oscillatory
motion and a spin. In particular, let R.(t) = R(t)exp(—wqtSFE3ST). By taking

derivative of R,(t), It follows that

Ri(t) = Ru(D)%(t), Qu(t) £ S ccos ((w+wq)t) esin((w+wa)t) 0 - (3.21)

Therefore, we have the following proposition.

Proposition 3.8. The solution of (3.1)) and (3.2)) is
R(t) = R.(t) exp(wqtSE5S™T), (3.22)

where R, (t) is the solution of (3.21)) with R,(0) = R(0) = Ry.

Now, assume ¢ = O(€) and wq = O(€). Then, it follows from Proposition [3.4] that

R.(t) is approximated by a spin along Ses axis with rotation rate

CQ

Vw+wd)?+e— (w4 wy) = N CET R = O(€). (3.23)

On the contrary, exp(wqtSE3ST) is a spin along Ses axis with rotation rate wq =
O(€), which is much bigger than R,(t). Therefore, R(t) can be approximated by
exp(wqtSE3ST).
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Remark. We now assume w > ¢ and w +wq > 0. It follows from Proposition [3.2
and Proposition that the average rotation is along the positive body z direction
if wq > Vw? — ¢ — w, and that the average rotation is along the negative body z
direction if wq < Vw? — 2 — w.

We note that the kinematic system , in which S, ¢, wq are control
variables, is trivially controllable. This is because we can set ¢ = 0, and choose S
and wy properly to drive R(t) to arbitrary state in arbitrary time. Therefore, in
the remaining sections of this chapter, we let wqy = 0, and consider controllability,

setpoint tracking, and command following problems for (3.1)) and sinusoidal control

Q(t) = cS|(coswt)e; + (sinwt)es], (3.24)

or piecewise sinusoidal control

Q(t) = Sk [cr(coswyt)er + cp(sinwgt)es], t € Ty (3.25)

3.2 Controllability of the attitude kinematic system

The following result provides a relationship between two elements of SO(3) that
have equal geodesic distance from I. This preliminary result is used in the controlla-
bility analysis of this section and is required for the controller constructions provided

later.

Lemma 3.9. Let A, B € SO(3), and assume that d(A,I) = d(B,I). Then there
exists S € SO(3) such that A = SBST.

Proof. Since the exponential map from so(3) to SO(3) is surjective and d(A,I) =

d(B, I), there exist unit vectors a,b € R?, such that

~

A= eXp((b&)a B = eXp(¢b>7 (326>
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where ¢ = d(Ry,I) = d(Ry, I). See [67, Proposition 2.5] for a construction of a and b.
Define a £ arccos a™b. For the case that sin o # 0, define w £ ba/sin ov. For the case
that sina = 0, let w be a unit vector in R? such that w'a = 0. Define S £ exp(aw).

It can be shown that a = Sb, which implies that
da = (pSh)" = ¢SbS™. (3.27)

It follows from (3.26) and (3.27) that A = exp(¢a) = exp(SpbST) = S exp(ph)ST =
SBST. O

Remark. Note that S satisfying A = SBST is not unique. Specifically, let v € R,
let a € R? be the unit vector that satisfies (3.26), and assume S € SO(3) satisfies
A = SBST. Define S; = exp(ya)S. Then, A = S;BST.

The following result implies that and is completely controllable in

time t¢ > 0. See |72, Definition 3.1.6] for the definition of controllability.

Theorem 3.10. Let ¢y > 0, Ry € SO(3) and Ry € SO(3), and define ¢ =
d(Rs, Ry). Assume that wmax > (27 — @) /tr, and let € < (wmaxts + ¢)/(27) be a
positive integer. Consider (3.1)) and (3.24), where S € SO(3) satisfies

RERy = Sexp(—¢Fs3)ST, (3.28)
and
— _ AH2
W= QMt_gb, _ —\W (3.29)
f f

Then, R(t;) = Ry.
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Proof. 1t follows from (3.9) and (3.29)) that

2 2 —
= 7r€’ b= 7l (wy w). (3.30)

Wn Wn

Since (3.8) is the solution of (3.1)) and (3.24), it follows from (3.17)) of Proposition 3.4]
and (3.25)-(B30) that
- (27l
R(t;) = R (i>

Wy
2l (wy — w)

Wn

= RyS exp ( E3> ST
= RySexp(¢Es)ST

= Ry.

This completes the proof. n

Note that Lemmawith A = R} Ry and B = exp(—¢FE3) confirms the existence
of S € SO(3) that satisfies (3.28)).

Example 3.11. Consider (3.1), where Ry = exp(E»). Let Ry = I and t; =
1 s, and note that d(Ro, R¢) = 1 rad. We use Theorem to choose the control
parameters of such that the solution of and satisfies R(tg) =
Ry, Let Q) be given by , where S = exp (%El), w =10 — 1 rad/s, and ¢ =
V20m — 1 rad/s. Since S, w, and c satisfy and with £ = 5, Theorem

implies that the solution of (3.1) and (3.24) satisfies R(ts) = R¢. Figure
shows the trajectory d(R(t), Ry). A

Next, we consider (3.1) and (3.24]) for the case that the frequency w is not a
control parameter. The motivation for this case is an actuation system that gener-

ates constant-frequency piecewise sinusoids. The following result shows that if w is

constant, then (3.1]) and ([3.24)) is completely controllable, but not completely control-
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Figure 3.2: Open-loop sinusoidal control (3.24)) yields R(1) = R.

lable in time ¢; > 0. Completely controllable is a weaker condition than completely
controllable in time ¢ > 0. See [72, Definition 3.1.6] for controllability definitions.

The proof of Theorems [3.12]is similar to that of Theorem [3.10| and is thus omitted.

Theorem 3.12. Let w € (0, wmax), Ro € SO(3), and Ry € SO(3), and define

¢ £ d(R, Ry). Let £ be a positive integer, and define t; = (27¢ — ¢)/w. Consider
(3.1) and (3.24), where S € SO(3) satisfies

R{Ry = Sexp(—¢Fs)ST, (3.31)
and
_ VAo = ¢ 47”855 — & (3.32)
f

Then, R(t;) = Rt.

Example 3.13. Consider (3.1), where Ry = exp (Fs). Let Ry = I and w =
(50m — 5)/4 rad/s. We use Theorem[3.19 to choose the control parameters of (3.24)

20



such that the solution of (3.1) and (3.24) satisfies R(t;) = R¢. Let Q be given by
(B-24), where S = exp (5E1) and ¢ = 5/20m — 1/4 rad/s. Since S and c satisfy (3.31))

and (3.32) with ¢ = 5, Theorem implies that the solution of (3.1) and (3.24])
satisfies R(ty) = Ry, where t; = 0.8 s. Figure shows the trajectory d(R(t), Ry).
A

AATAAAY)

AATAVAVAVAVAY,

0 02040608 1 12 0 02040608 1 12
t(s) t(s)

Figure 3.3: Open-loop sinusoidal control (3.24]) yields R(0.8) = R.

3.3 Setpoint tracking

In this section, we consider setpoint tracking, where Q4(t) = 0, that is, Rq is

constant. In this case, Z satisfies

Z(t) = Z(H)Q(1), (3.33)

where Z(0) = R} Ro. The objective is to design a Z-feedback admissible control such
that for all Zy € SO(3), lim;_,o 2(t) = 0. We present three control algorithms that
achieve this objective. The first algorithm uses nonconstant update rate, while the
other two use constant update rate. The motivation for using constant update rate

is that it may simplify the digital implementation of the control algorithms.
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Algorithm 3.14. Let n be a positive integer, and consider the control (3.25)),

where Sk, we, ¢, and Aty satisfy

Sk eXp(—ZkE;g)S];F = Zk,

Ck 2mn

wE 2mn — z
2

Aty = —"

2 2"
\/wk+ck

(3.34)
(3.35)

(3.36)

Note that Lemma [3.9) confirms the existence of Sy € SO(3) that satisfies ((3.34]).

Theorem 3.15. Consider (3.25)) and (3.33)), where Sk, wg, ¢k, and Aty are given

by Algorithm [3.14] Then, for all Z, € SO(3), lim;, 2(t) = 0.

Proof. The right-hand side of the differential equation obtained by substituting ((3.25)
into (3.33)) contains discontinuities at t;. However, the solution to (3.25)) and (3.33))

is continuous on [0, 00). Thus, it follows from (3.17)) of Proposition that

Zyy1 = Z1,Sy exp ((Vwi +c2 — wk) AtkEg,) ST,

and using (3.36)) yields

Zk+1 — ZkSk exp(—katkEg)S,;F.

Substituting ((3.34)—(3.36)) into (3.37) yields

—n

1
Zi41 = Sk exp (
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(3.37)



which implies that

trexp(="22,F3) — 1

Zkp1 = d(Zgy1, I) = arccos 5 (3.38)
Since
CoS PT”zk —sin 1’T”zk 0
1—n
exp " 2Bz | = |sin I_T"Zk cos I_T"Zk 0],
0 0 1
it follows from ([3.38)) that
1-— —1
2j41 = arccos (cos nzk) _ 2k (3.39)
n n

which implies that limy_, 2z = 0.
Next, (3.39)) implies that z, < z. Since, in addition, wy < Wpay, it follows from

(B:35) that

2 2
2mn 2mn
Cr = W —— | — 1 < Wnax — | -1
2mn — 2z, 2mn — 2y
Thus, (3.36)) implies that

2 —
At > 720 g (3.40)

nwmax

Next, for all t € J;, define

Z(t) 2 7Sy exp ((m - wk) (t tk)Eg) ST, (3.41)