51 research outputs found

    Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    Get PDF
    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. © 2016 Hou et al

    The Toxoplasma monocarboxylate transporters are involved in the metabolism within the apicoplast and are linked to parasite survival

    Get PDF
    The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to be evolved from the putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexan

    Functional screening reveals Toxoplasma prenylated proteins required for endocytic trafficking and rhoptry protein sorting

    Get PDF
    In the apicomplexans, endocytosed cargos (e.g., hemoglobin) are trafficked to a specialized organelle for digestion. This follows a unique endocytotic process at the micropore/cytostome in these parasites. However, the mechanism underlying endocytic trafficking remains elusive, due to the repurposing of classical endocytic proteins for the biogenesis of apical organelles. To resolve this issue, we have exploited the genetic tractability of the model apicomplexan Toxoplasma gondii, which ingests host cytosolic materials (e.g., green fluorescent protein[GFP]). We determined an association between protein prenylation and endocytic trafficking, and using an alkyne-labeled click chemistry approach, the prenylated proteome was characterized. Genome editing, using clustered regularly interspaced short palindromic repaet/CRISPR-associated nuclease 9 (CRISPR/Cas9), was efficiently utilized to generate genetically modified lines for the functional screening of 23 prenylated candidates. This identified four of these proteins that regulate the trafficking of endocytosed GFP vesicles. Among these proteins, Rab1B and YKT6.1 are highly conserved but are non-classical endocytic proteins in eukaryotes. Confocal imaging analysis showed that Rab1B and Ras are substantially localized to both the trans-Golgi network and the endosome-like compartments in the parasite. Conditional knockdown of Rab1B caused a rapid defect in secretory trafficking to the rhoptry bulb, suggesting a trafficking intersection role for the key regulator Rab1B. Further experiments confirmed a critical role for protein prenylation in regulating the stability/activity of these proteins (i.e., Rab1B and YKT6.1) in the parasite. Our findings define the molecular basis of endocytic trafficking and reveal a potential intersection function of Rab1B on membrane trafficking in T. gondii. This might extend to other related protists, including the malarial parasites

    Towards the biogeography of prokaryotic genes

    Get PDF
    Funding was provided by the European Union’s Horizon 2020 Research and Innovation Programme (grant 686070: DD-DeCaF to P.B.) and Marie Skłodowska-Curie Actions (grant 713673 to A.R.d.R.), the European Research Council (ERC) MicrobioS (ERC-AdG-669830 to P.B.), JTC project jumpAR (01KI1706 to P.B.), a BMBF Grant (grant 031L0181A: LAMarCK to P.B.), the European Molecular Biology Laboratory (P.B.), the ETH and Helmut Horten Foundation (S.S.), the National Key R&D Program of China (grant 2020YFA0712403 to X.-M.Z.), (grant 61932008 to X.-M.Z.; grant 61772368 to X.-M.Z.; grant 31950410544 to L.P.C.), the Shanghai Municipal Science and Technology Major Project (grant 2018SHZDZX01 to X.-M.Z. and L.P.C.) and Zhangjiang Lab (X.-M.Z. and L.P.C.), the International Development Research Centre (grant 109304, EMBARK under the JPI AMR framework; to L.P.C.), la Caixa Foundation (grant 100010434, fellowship code LCF/BQ/DI18/11660009 to A.R.d.R.), the Severo Ochoa Program for Centres of Excellence in R&D from the Agencia Estatal de Investigación of Spain (grant SEV-2016-0672 (2017–2021) to C.P.C.), the Ministerio de Ciencia, Innovación y Universidades (grant PGC2018-098073-A-I00 MCIU/AEI/FEDER to J.H.-C. and J.G.-L.), the Innovation Fund Denmark (grant 4203-00005B, PNM), the Biotechnology and Biological Sciences research Council (BBSrC) Gut MicroInstitute Strategic Programmebes and Health BB/r012490/1 and its constituent project BBS/e/F/000Pr10355 (F.H.). R.A. is a member of the Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences.Peer reviewe
    corecore