113 research outputs found

    Electrospun Thymosin Beta-4 Loaded PLGA/PLA Nanofiber/ Microfiber Hybrid Yarns for Tendon Tissue Engineering Application

    Get PDF
    Microfiber yarns (MY) have been widely employed to construct tendon tissue grafts. However, suboptimal ultrastructure and inappropriate environments for cell interactions limit their clinical application. Herein, we designed a modified electrospinning device to coat poly(lactic-co-glycolic acid) PLGA nanofibers onto polylactic acid (PLA) MY to generate PLGA/PLA hybrid yarns (HY), which had a well-aligned nanofibrous structure, resembling the ultrastructure of native tendon tissues and showed enhanced failure load compared to PLA MY. PLGA/PLA HY significantly improved the growth, proliferation, and tendon-specific gene expressions of human adipose derived mesenchymal stem cells (HADMSC) compared to PLA MY. Moreover, thymosin beta-4 (Tβ4) loaded PLGA/PLA HY presented a sustained drug release manner for 28 days and showed an additive effect on promoting HADMSC migration, proliferation, and tenogenic differentiation. Collectively, the combination of Tβ4 with the nano-topography of PLGA/PLA HY might be an efficient strategy to promote tenogenesis of adult stem cells for tendon tissue engineering

    The Effect of Process Parameters on the Properties of Elastic Melt Blown Nonwovens: Air pressure and DCD

    Get PDF
    An elastic masterbatch and elastic melt blown nonwovens are prepared based successively on styrene-ethylene/butylene-styrene (SEBS) and polypropylene (PP) blend. The phase separation morphology, rheological properties and crystal structure of the elastic masterbatch are investigated. The results show that a compatible and stable structure is obtained in molten SEBS and PP blend with excellent mobility in the temperature range of 210–230C. The crystallization of PP slows down resulting in a finer structure due to the restriction of the SEBS network structure with rarely change of crystalline structure. The relationship between process parameters and properties of the elastic nonwoven is also studied in detail. Air pressure and die to collector distance (DCD) have discernible effects on fiber diameter and bonding between fibers, further influencing the performances of nonwovens including porosity, tensile strength and elastic recovery. Elastic recovery is shown to be significantly more affected by DCD than by air pressure

    Determination of Reliable Fatigue Life Predictors for Magnetorheological Elastomers Under Dynamic Equi-Biaxial Loading

    Get PDF
    Fatigue life prediction is of great significance in ensuring magnetorheological elastomer (MRE) based rubber components exhibit reliability and do not compromise safety under complex loading and this necessitates the development of plausible fatigue life predictors for MREs. In this research, silicone rubber based MREs were fabricated by incorporating soft carbonyl iron magnetic particles. Equi-biaxial fatigue behaviour of the fabricated MREs was investigated by using the bubble inflation method. The relationship between fatigue life and maximum engineering stress, maximum strain and strain energy density were studied. The results showed that maximum engineering stress and stored energy density can be used as reliable fatigue life predictors for SR based MREs when they are subjected to dynamic equi-biaxial loading. General equations based on maximum engineering stress and strain energy density were developed for fatigue life prediction of MREs

    Electromechanical Instability in Silicone-and Acrylate-based Dielectric Elastomers

    Get PDF
    Electromechanical instability (EMI) is regarded as a significant factor in preventing dielectric elastomers (DEs) fromachieving large voltage-induced deformations. In this study, the strain-stiffening effect was used to control the occurrence of EMI in DEs. The results show that the stretching ratio required to provide a feasible strain-stiffening effect in silicone rubber (SR) was smaller than that needed for a commercial DE material, VHB 4910. The experimental data were compared with currently used models for the simulation of EMI in DEs. We found that EMI could be eliminated in the deformation of these elastomers when pre-stretching was used. Through the application of a prestretching ratio of above 2.0, EMI was suppressed in both the VHB 4910 and SR samples. The findings of this research are of great significance in the maximization of the electromechanical performance of DE materials

    Learning Disentangled Semantic Representations for Zero-Shot Cross-Lingual Transfer in Multilingual Machine Reading Comprehension

    Full text link
    Multilingual pre-trained models are able to zero-shot transfer knowledge from rich-resource to low-resource languages in machine reading comprehension (MRC). However, inherent linguistic discrepancies in different languages could make answer spans predicted by zero-shot transfer violate syntactic constraints of the target language. In this paper, we propose a novel multilingual MRC framework equipped with a Siamese Semantic Disentanglement Model (SSDM) to disassociate semantics from syntax in representations learned by multilingual pre-trained models. To explicitly transfer only semantic knowledge to the target language, we propose two groups of losses tailored for semantic and syntactic encoding and disentanglement. Experimental results on three multilingual MRC datasets (i.e., XQuAD, MLQA, and TyDi QA) demonstrate the effectiveness of our proposed approach over models based on mBERT and XLM-100. Code is available at:https://github.com/wulinjuan/SSDM_MRC.Comment: Accepted to ACL 2022 (main conference

    Rapid fabrication of silver nanoparticle/polydopamine functionalized polyester fibers

    Get PDF
    In this paper, silver nanoparticles functionalized poly(ethylene terephthalate) (PET) fibers with antimicrobial activity, electrical conductivity and good coating stability are reported. Firstly, silver plated PET fibers were fabricated by rapid polydopamine (PDA) modification followed by electroless plating. Secondly, the surface morphologies and compositions of PDA modified and silver coated PET fibers were characterized by employing scanning electron microscopy, atomic force microscopy, X-ray diffraction and energy dispersive spectrometry. Finally, the antimicrobial properties and electrical conductivity of the silver plated PET fibers were investigated. The results showed that the silver coated PET fibers exhibited excellent antimicrobial activity to both Escherichia coli and Staphylococcus aureus (with an antimicrobial efficiency of 100 and 99.99%, respectively), and that the antimicrobial activity was well maintained after washing. The silver coated PET fibers showed electrical resistance of 0.76 Ω per 1 cm, indicating good conductivity. It was also demonstrated that the silver layer that formed had good mechanical durability, as indicated by conductivity measurements during tensile loading and observation of the surface morphology of the fibers under various modes of deformation

    The fabrication and properties of magnetorheological elastomers employing bio-inspired dopamine modified carbonyl iron particles

    Get PDF
    To obtain magnetorheological elastomers (MREs) with improved mechanical properties and exhibiting an enhanced magnetorheological (MR) effect, bio-inspired dopamine modification has been used to improve the functionality at the surface of carbonyl iron (CI) particles. Various techniques including x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to confirm that a polydopamine (PDA) layer of about 27.5 nm had been successfully deposited on the surface of the carbonyl iron particles prior to their inclusion in the MRE composites. The magnetic properties of PDA modified CI particles were shown to be almost the same as those for untreated CI particles. With the introduction of a PDA layer to the surfaces of the particles, both the tensile strength and the elongation at break of the MREs were improved. Furthermore, the MRE composites filled with PDA-coated CI particles exhibited lower zero-field storage moduli but higher magnetic field induced storage moduli when magnetization saturation was reached. The absolute and relative MR effect for the MREs reached 0.68 ± 0.002 MPa and 294% respectively, which were higher than those of MREs with pristine CI particles whose absolute and relative MR effect were 0.57 ± 0.02 MPa and 187% respectively. The findings of this work provide insights into enhanced fabrication of MREs with both improved mechanical properties and magneto-induced performance

    Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity

    Get PDF
    Strain sensors are currently limited by an inability to operate over large deformations or to exhibit linear responses to strain. Producing strain sensors meeting these criteria remains a particularly difficult challenge. In this work, the fabrication of a highly flexible strain sensor based on electrospun thermoplastic polyurethane (TPU) fibrous tubes comprising wavy and oriented fibers coated with carboxylated multiwall carbon nanotubes (CNTs) is described. By combining spraying and ultrasonic-assisted deposition, the number of CNTs deposited on the electrospun TPU fibrous tube could reach 12 wt%, which can potentially lead to the formation of an excellent conductive network with high conductivity of 0.01 S/cm. The as-prepared strain sensors exhibited a wide strain sensing range of 0–760% and importantly high linearity over the whole sensing range while maintaining high sensitivity with a GF of 57. Moreover, the strain sensors were capable of detecting a low strain (2%) and achieved a fast response time whilst retaining a high level of durability. The TPU/CNTs fibrous tube-based strain sensors were found capable of accurately monitoring both large and small human body motions. Additionally, the strain sensors exhibited rapid response time, (e.g., 45 ms) combined with reliable long-term stability and durability when subjected to 60 min of water washing. The strain sensors developed in this research had the ability to detect large and subtle human motions, (e.g., bending of the finger, wrist, and knee, and swallowing). Consequently, this work provides an effective method for designing and manufacturing high-performance fiber-based wearable strain sensors, which offer wide strain sensing ranges and high linearity over broad working strain ranges

    Styrene-ethylene-butadiene-styrene copolymer/carbon nanotubes composite fiber based strain sensor with wide sensing range and high linearity for human motion detection

    Get PDF
    Flexible strain sensors have attracted extensive attention due to their potential applications in wearable electronics and health monitoring. However, it is still a challenge to obtain flexible strain sensors with both high stretchability and wide linear strain sensing range. In this study, styrene-ethylene-butadiene-styrene copolymer/carbon nanotubes (SEBS/CNTs) composite fiber which showed both electrical conductivity and high stretchability was fabricated through a scalable wet spinning method. The effect of CNTs content on the strain sensing behavior of the SEBS/CNTs fiber based strain sensor was investigated. The results showed that when the CNTs content reached 7 wt%, the SEBS/CNTs composite fiber was capable of sensing strains as high as 500.20% and showed a wide linear strain sensing range of 0-500.2% with a gauge factor (GF) of 38.57. Combining high stretchability, high linearity and reliable stability, the SEBS/CNTs composite fiber based strain sensor had the ability to monitor the activities of different human body parts including hand, wrist, elbow, shoulder and knee

    Study on Spinnability of PP/PU Blends and Preparation of PP/PU Bi-component Melt Blown Nonwovens

    Get PDF
    Melt blown polymer blends offers a good way to combine two polymers in the same fiber generating nonwovens with new and novel properties. In this study, polypropylene (PP) and polyurethane (PU) were blended to prepare PP/PU bicomponent melt blown nonwovens. The spinnability of PP/PU composites was investigated and PP/PU bi-component nonwovens with compositions of 95/5, 90/10, 80/20 and 70/30 were prepared by using the melt blowing technique. The melt blown fibers exhibited a ‘sea-island’ structure with PP as the continuous phase and PU as the dispersed phase. When the content of PU in the blend was above 40 %, PP/PU melt blown nonwovens could not be produced due to fiber breaking. For PP/PU (90/10) nonwovens, it was found that the average fiber diameter decreased with increasing die to collector (DCD) and elevated hot air pressure
    corecore