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Abstract 

Electromechanical instability (EMI) is regarded as a significant factor in preventing 

dielectric elastomers (DEs) achieving large voltage-induced deformations. In this work, 

the strain-stiffening effect was used to control EMI in DEs. Results showed that the 

stretch ratio required to provide a feasible strain-stiffening effect in silicone rubber (SR) 

was smaller than that for a commercial DE material VHB 4910. Experimental data were 

compared with currently used models for the simulation of EMI in DEs. It was found 

that EMI could be eliminated in the deformation of these elastomers if pre-stretch was 

employed. By applying a pre-stretch ratio of above 2.0, EMI was suppressed in both 

VHB 4910 and SR samples. The findings of this research are of great significance in 

maximizing the electromechanical performance of DE materials. 

1. Introduction 

Dielectric Elastomers (DEs), which can respond to electrical stimuli by changing their 

shape, belong to the family of smart materials. The effective compressive stress (σv) is 

created by applying a high voltage between the top and bottom surfaces of a DE sample 

and complies with Eqn. (1) [1]. DEs have attracted increased attention because they 

offer the advantages of large voltage-induced deformation (> 380%), high energy 

density (≈ 3.4 MJ/m3) and high electromechanical coupling efficiency (> 85%) [2], 
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combined with light weight, low cost and freedom from noise pollution [3-6]. Moreover, 

they are sometimes referred to as “artificial muscle” materials because they can readily 

resemble natural muscle under strain, as well as displaying similar actuation pressures, 

response speeds, electromechanical energy densities and coupling efficiencies. 

Consequently, DEs have been proposed for multiple applications in the fields of 

biomimicry [7, 8], artificial intelligence [9-11] and renewable energy [12, 13]. 

( )
2 2

0 0V h      ==
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Where ε' is the relative permittivity of the DE material, ε0 is the permittivity of the free 

space (8.85×10-12 F/m), φ is the electric field which equals the applied high voltage (Φ) 

divided by the thickness of the DE (h).  

Generally, DEs can exhibit a high range of strains (10%–300%), but they require large 

electric fields (usually around 100 V/µm) to achieve high actuated strains [14]. 

Furthermore, electromechanical instability (EMI), which is also termed pull-in 

instability, is highlighted as the most significant failure mode for DEs when they are 

used as electromechanical actuators [15, 16]. This kind of failure occurs when the 

thickness of a DE falls below a certain threshold and the equivalent Maxwell pressure 

exceeds the compressive stress of the elastomer film. Its positive feedback leads to an 

unstable compression of the elastomer material which reduces the thickness further and 

consequently breakdown ensues [17]. Significantly, EMI has been observed to occur 

when an electric field is applied to the widely used commercial polyacrylate DE 

material, VHB 4910, which is manufactured and supplied by 3M (see Fig. 1). This has 

limited the material’s ability to achieve large voltage-induced deformations [17, 18]. In 

addition, this polyacrylate film has the intrinsic drawbacks of low thermal stability, 

sensitivity to environmental degradation [19] and high viscoelasticity resulting in a 

relatively slow response to an electrical signal, thus limiting coupling efficiency [20, 

21]. 



 

Fig. 1 An illustration of the DE working principle and the occurrence of EMI 

 

It was reported that the operating electric field of a DE could be decreased by increasing 

a DE’s dielectric constant and also through lowering the material’s Young’s modulus 

[22]. A soft silicone rubber (SR) not only has a low Young’s modulus, but also has the 

advantages of low viscoelasticity, good thermal stability and improved biocompatibility 

when compared with most carbon-based polymers including the commercially 

available 3M VHB 4910 polyacrylate [19]. Though the dielectric constant of SR is 

relatively low (≈ 2.9), it can be increased by incorporating nano/micron sized high-

dielectric filler particles into the DE matrix [23, 24].  

It has also been shown that pre-stretch offers numerous advantages in improving the 

properties of DEs when the material is subjected to large voltage-induced deformations, 

such as decreasing the viscoelastic (time-dependent) behaviour of VHB 4910, 

improving the material’s actuation performance, dielectric strength, response speed and 

eliminating EMI. Zhao et al. [25] studied the mechanism of EMI and found that it could 

be delayed by tuning the stiffness of DEs using mechanical pre-stretch. The Suo model 

has been widely used to investigate EMI in DEs [26] and Li [27] developed a new 

model by considering the influence of stretch on the dielectric constant of DE materials. 

In this work, the EMI of two kinds of DEs, SR and VHB 4910, has been studied when 

samples of each were subjected to equi-biaxial stretch. Experimental data were 

compared with modeling results to provide an insight into the electromechanical 

performance of SR and VHB 4910 when undergoing EMI. 



2. Materials and methods 

2.1 Sample preparation 

Two kinds of hyperelastic DE materials were chosen for this research. A commercial 

silicone polymer, dimethylsiloxane (LSR 4305 DEV, Bluestar Ltd., U.S.A), consisting 

of two parts (part A and part B) was used to fabricate silicone rubber based DE samples; 

a commercial DE, VHB 4910; a polyacrylate from the 3M company UK, having a 

thickness of 1 mm, was also employed. NYOGEL 756G (Nye Lubricants, Inc., USA), 

a conductive carbon grease, was used as the compliant electrode for both SR based DEs 

and VHB4910. 

2.2 Mechanical tests 

The bubble inflation test system was used to induce dynamic equi-biaxial mechanical 

stresses in DE samples by hydraulically inflating and deflating them using inert silicone 

oil as inflation medium. Disc samples of 2 mm thickness and 50 mm nominal diameter 

were prepared for equi-biaxial testing. The samples were held in the bubble inflation 

system’s inflation orifice, as shown in Fig .2. In static tests, pressure was applied to the 

samples causing them to inflate. During inflation (or deflation) the system’s vision 

system used two complementary metal-oxide semiconductor (CMOS) cameras to 

record the movement of the centres of specific points aligned at the pole on the surface 

of each sample. Stress values were simultaneously derived from the applied pressure 

and bubble geometry, with strain (or stretch ratio) values calculated from the change in 

circumferential distance between the centres of the points on the bubble surface using 

three-dimensional position coordinates obtained from the vision system output. Hence, 

the relation between stress and strain (or stretch ratio) was obtained in real time. 

 



 

Fig. 2 Inflation orifice for bubble inflation test 

 

2.3 Dielectric tests 

Broadband dielectric spectroscopy was carried out on samples at 20°C in the frequency 

range from 100 Hz to 10 MHz using a Turnkey broadband dielectric spectrometer. The 

cell was a disposable gold-plated flat electrode with a diameter of 20 mm and a 

thickness of 2 mm. Samples were placed in the gap between the electrode and the 

sample holder. 

2.4 Electromechanical tests 

The electromechanical test system consists of a camera, a biaxial pre-stretching clamp 

and a high voltage power supply. Samples of 0.3 mm thickness were coated with the 

compliant electrode. The samples were clamped with a pre-stretch ratio of 1.6 applied 

to them. The camera recorded changes in the area of the compliant electrode when an 

electric field was incrementally applied in voltage steps of 0.5 kV. Thereafter, the initial 

area (A0) and the actuated area (A) were accurately measured using AutoCAD software. 

The area strain sa was calculated from the following expression. 

( )0 0as A A A= −  (2) 

3. The theory of EMI for hyperelastic DEs 

Incompressible or nearly incompressible isotropic materials, such as rubber and muscle 



fiber, are capable of undergoing large reversible elastic deformations and are often 

characterised by a strain energy function per unit volume denoted by W [28, 29]. One 

type of function is obtained from symmetry, thermodynamics and energy considerations 

and depends upon the three simplest even powered strain invariants (I1, I2, I3) for the 

material [30]. Hence: 

1 2 3( , , )W W I I I=
 

(3)
 

The strain energy function of Eqn. (3) can be replaced by means of a Lagrange 

multiplier [31] to give: 

1 2 3 1 2 3( , , ) ( , ) ( 1)
2

P
W I I I W I I I= − −
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As the strain invariants depend on principal stretches (λ1, λ2, λ3), the expression for 

strain-energy may alternatively appear as a function of stretches: 

1 2 1 2 3( , ) ( , , )W I I W   =
 

(8)
 

Generally, for an incompressible material under uniaxial elongation, λ1 = λ and λ2 = λ3 

= λ-0.5. This allows the three simplest even powered strain invariants to be expressed as:  

2
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whereas for equi-biaxial tension, the principal stretches are λ1 = λ2 = λ and λ3 = λ-2, 

hence: 

2

1 4
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Meanwhile, the true stress-strain relationship σ(λ) for elastomers can be derived from a 

strain-energy density function (W(λ)) [32] as shown in Eqn. (15).  

( )
( )W

 





=

  
(15)

 

According to Suo’s theory [33], the applied voltage Φ is a function of stretch λ which 

can be obtained from Eqn. (16) [34]. 

( )pre V   + =  (16) 

where the membrane is subjected to a fixed force P and is mechanically pre-stretched 

to a ratio λpre corresponding to a stress σpre = P/hλpre; σ(λ) is the true stress related to 

stretch. Combined with Eqn. (17), Φ(λ) can be determined using the expression: 

( )2

0( ) ( ) preH      −  = −
 

(17)
 

In previous research, it was considered that this minimal influence could be ignored 

[41]. Recently, it was found that pre-stretch had a significant influence on the dielectric 

constant of VHB 4910 [27, 35]. However, the dielectric constant of SR was virtually 

unchanged during pre-stretch in the experiments described here. In Li’s work [27], the 

relation between equi-biaxial stretch and dielectric constant of VHB 4910 ε(λ) was 

summerised using the following equation (Eqn. (18)). The electrostrictive coefficients 

a, b and c in the equation were determined by fitting the experimental data. Typical 

values were a = -0.2908, b = 0.0902, c = -0.0098. 

( ) ( ) ( ) ( )( )2 3

0= 1 2 1 4 1 8 1a b c       + − + − + −               (18) 

If this expression is substituted in Eqn. (17), Eqn. (19) can be determined. 

( ) ( ) ( ) ( )( )( )2 32

0( ) ( ) 1 2 1 4 1 8 1preH a b c         −  = − + − + − + −     (19) 

A theoretical analysis has been incorporated into the research described in this paper to 

describe the relation between applied voltage and actuated stretch ratio. Consequently, 

an explanation for the occurrence of EMI in DEs is given

4. Results and discussion 

In DEs the value of the measured dielectric constant is dependent upon a number of 

factors; principally the chemical composition and electronic structure of the elastomeric 

material. Bond energies and bond lengths as well as bond angles can all have an 



influence, as can differences in electronegativities between adjacent bound atoms 

comprising the molecular chains. In this case, the two dielectric elastomers utilise 

carbon-based (VHB 4910) and silicon-based (SR LSR 4305) polymeric units, which 

display very different characteristics in an imposed electric field. The dielectric spectra 

of VHB 4910 and the silicone composites at 20°C are shown in Fig 3. As can be seen 

from the figure, the dielectric constant of VHB 4910 was about 4.7 at 1 kHz. Over the 

test range, it decreased gradually from 4.8 to 3.5 with increases in frequency. However, 

the dielectric constant for pure SR, which is about 2.9, appeared to be independent of 

frequency. By comparison with VHB 4910, the permittivity of SR LSR 4305 is lower, 

because the polyacrylate contains a strong carbonyl group (-C=O) which has a much 

higher bond energy and is much more polar than any other Si-O, Si-C, Si-H (silicon) or 

C-O, C-C, C-H (carbon) bond. In the VHB 4910, the explanation for its frequency-

dependent dielectric response lies in the occurrence of a relaxation process due to the 

effect of orientation polarisation in the presence of the electric field [36]. 

 

 

Fig. 3 Plots of dielectric constant versus frequency 

 

Fig. 4 shows the relation between equi-biaxial stretch ratio and true stress. As can be 

seen from this figure, the true stress of pure SR (0.36 MPa) was higher than that of 

VHB 4910 (1.8 MPa) at a stretch ratio of 2.5. The increase of true stress with increasing 



stretch ratio in SR was remarkably more pronounced than that of VHB 4910 indicating 

a more rapid stiffening effect in pure SR, which is favorable for suppressing EMI. The 

required true stress to achieve the same stretch ratio for pure SR was lower than that of 

VHB 4910 at stretch ratios below 1.6 while it was higher than that of VHB 4910 beyond 

stretch ratios of 1.6. 

 

 

Fig. 4 The relation between true stress and stretch ratio 

 

As reported in earlier research [37], EMI can be eliminated by controlling the strain-

stiffening effect. It is well known that the stiffness of polymer materials can be 

characterised by tangent modulus, hence the strain-stiffening effect can be described by 

obtaining the relation between stretch ratio and tangent modulus. Fig. 5 shows the 

evolution of tangent modulus with increasing stretch ratio. As can be observed from 

this figure, for both pure SR and VHB 4910, tangent modulus decreased and then 

increased with the increase of stretch ratio. At a specific stretch ratio, tangent modulus 

reached a minimum indicating the lowest stiffness for each material. For VHB 4910, 

the lowest tangent modulus was about 0.10 MPa at a stretch ratio of about 2, while the 

lowest tangent modulus of pure SR was about 0.17 MPa at the lowest stretch ratio of 

about 1.5. 

 



 

Fig. 5 Plots of tangent modulus dependency on stretch ratio 

 

The relation between applied voltage and actuated stretch ratio is shown in Fig. 6. As 

can be seen from the figure, without pre-stretch, the VHB 4910 film achieved a very 

small equi-biaxial stretch ratio by applying a high voltage of about 10 kV in the 

experiment. However, it can be seen from the curves plotted with both equations from 

the Suo and Li models that the actuated stretch ratio increased with an increase in 

voltage up to the peak and then diminished. In a typical experiment, the voltage was 

programmed to ramp up slowly. When it reached a local maximum with a much larger 

stretch ratio, no state of equilibrium existed in the vicinity of this maximum as the 

voltage increased further. In this circumstance, EMI occurs [34]. The Suo model 

ignored the influence of stretch on the dielectric constant of a DE material. By using 

this model, when VHB 4910 was applied with a pre-stretch ratio of 1.6, the voltage 

increased as stretch ratio increased and reached a plateau beyond a stretch ratio of about 

2. When a pre-stretch ratio of 2 was applied, voltage increased with an increase in 

stretch ratio until the stretch ratio reached 2.5. The Li model included a consideration 

of the influence of stretch on the dielectric constant of DE materials. By using the Li 

model, the voltage increased and then decreased with increasing stretch ratio when a 

pre-stretch ratio of 1.6 was applied. When a pre-stretch ratio of 2 was applied to the 

material, the voltage increased with increasing stretch ratio and a plateau was almost 

reached at a stretch ratio of 2.5. The experimental data for VHB4910 from this research 

was located between the two plotted curves derived from the Suo and Li models 



respectively. The reason for this was probably because the pre-stretch frame used and/or 

the compliant electrode layer which restrained further deformation of the VHB 4910 

film. 

 

 

Fig. 6 Plots of voltage related to stretch ratio for VHB 4910 

 

Fig. 7 shows the plots of voltage with stretch ratio for pure SR, both curves derived 

from the Suo model and experimental data are presented. As the dielectric constant of 

SR is independent of stretch due to the absence of Maxwell polarization [38], the 

simulation using the Li model, which considered the effect of stretch on dielectric 

constant, is not described here. Simulation curves from the Suo model in Fig. 7 show 

that without pre-stretch, the EMI for a 300 μm-thick SR membrane occurred at a voltage 

of about 9 kV for an equi-biaxial stretch ratio of 1.21. However, breakdown failure took 

place at a stretch ratio of 1.02 by applying a voltage of 2.5 kV in the experiment. At a 

pre-stretch ratio of 1.6, the simulated curve reached a plateau at a voltage of about 4.5 

kV, while the SR sample failed at a voltage induced stretch ratio of 1.8 under a voltage 

of 3.8 kV. Finally, EMI for the SR thin film was eliminated by applying a pre-stretch 

ratio of 2.0. The SR specimen achieved a voltage induced stretch of 2.3 at a voltage of 

3.2 kV.  



 

Fig. 7 Plots of voltage related to stretch ratio for pure SR 

 

Conclusions 

Both acrylate VHB 4910 and SR can achieve large voltage induced stretch ratios. Equi-

biaxial tensile testing showed that pure SR exhibited a strain-stiffening effect at a 

smaller stretch ratio than for VHB 4910. SR based DEs required a lower electric field 

to achieve a large voltage-induced deformation and to exhibit the elimination of EMI. 

Hence, SR is a promising candidate for DE materials in terms of its general 

electromechanical performance and the elimination of EMI. 
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