162 research outputs found

    Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells.

    Get PDF
    BACKGROUND: Adipose tissue provides a readily available source of autologous stem cells. Adipose-derived stem cells (ASCs) have been proposed as a source for endothelial cell substitutes for lining the luminal surface of tissue engineered bypass grafts. Endothelial nitric oxide synthase (eNOS) is a key protein in endothelial cell function. Currently, endothelial differentiation from ASCs is limited by poor eNOS expression. The goal of this study was to investigate the role of three molecules, sphingosine-1-phosphate (S1P), bradykinin, and prostaglandin-E1 (PGE1) in ASC endothelial differentiation. Endothelial differentiation markers (CD31, vWF and eNOS) were used to evaluate the level of ASCs differentiation capability. RESULTS: ASCs demonstrated differentiation capability toward to adipose, osteocyte and endothelial like cell phenotypes. Bradykinin, S1P and PGE were used to promote differentiation of ASCs to an endothelial phenotype. Real-time PCR showed that all three molecules induced significantly greater expression of endothelial differentiation markers CD31, vWF and eNOS than untreated cells. Among the three molecules, S1P showed the highest up-regulation on endothelial differentiation markers. Immunostaining confirmed presence of more eNOS in cells treated with S1P than the other groups. Cell growth measurements by MTT assay, cell counting and EdU DNA incorporation suggest that S1P promotes cell growth during ASCs endothelial differentiation. The S1P1 receptor was expressed in ASC-differentiated endothelial cells and S1P induced up-regulation of PI3K. CONCLUSIONS: S1P up-regulates endothelial cell markers including eNOS in ASCs differentiated to endothelial like cells. This up-regulation appears to be mediated by the up-regulation of PI3K via S1P1 receptor. ASCs treated with S1P offer promising use as endothelial cell substitutes for tissue engineered vascular grafts and vascular networks

    Symmetric cone monotone functions and symmetric cone convex functions

    Get PDF
    Abstract. Symmetric cone (SC) monotone functions and SC-convex functions are real scalar valued functions which induce Löwner operators associated with a simple Euclidean Jordan algebra to preserve the monotone order and convex order, respectively. In this paper, for a general simple Euclidean Jordan algebra except for octonion case, we show that the SC-monotonicity (respectively, SC-convexity) of order r is implied by the matrix monotonicity (respectively, matrix convexity) of some fixed order r (≥ r). As a consequence, we draw the conclusion that (except for octonion case) a function i

    Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting

    Get PDF
    Unremitting efforts have been made to develop high-performance photoelectrochemical (PEC) water-splitting system to produce clean hydrogen fuel using sunlight. In this work, a novel way, combining highly-ordered nanowires (NWs) structure and piezotronic effect of p-type ZnO has been demonstrated to dramatically enhance PEC hydrogen evolution performance. Systematic characterizations indicate that the Sb atoms uniformly dope into ZnO NWs and substitute Zn sites with the introduction of two zinc vacancies to form the shallow acceptor SbZn–2VZn complex. Detailed synchrotron-based X-ray absorption near-edge structure (XANES) experiments in O K-edge and Zn L-edge further confirm the formation of the complex, and theoretical calculation verifies the Sb5+ state dominating the complex. The optimal photocurrent density of the 0.2Sb/ZnO-anneal NWs can reach −0.85 mA/cm2 (0 VRHE) which is 17.2 times larger than that of the n-ZnO NWs under sunlight illumination (100 mW/cm2). Furthermore, the piezotronic effect can be introduced to regulate the charge separation and transfer in the ZnO NWs through modulating the band structure near the interface. The photocurrent density can further increase to −1.08 mA/cm2 (0 VRHE) under a 0.6% tensile strain, which is 27.4% enhancement with respect to the ZnO sample without strain. These results provide an efficient way to design and develop high-performance photoelectrodes toward PEC hydrogen evolution

    A new era for studies on cross-Strait relations: introduction

    Get PDF
    After more than half a century’s separation, interaction between China and Taiwan has increased and has progressively changed from a politico-economic interaction to a more civic interaction. Scholars working on cross-Strait relations have recently begun to pay attention to the civic influence of Taiwanese businesses on the relationship. Some emphasize the importance of sub-governmental interactions in the process of cross-Strait integration. Others assert that Taiwanese businesses can exercise economic leverage to constrain the Chinese government in cross-Strait policymaking. These scholars stress bottom–up processes by observing current phenomena, then deducing the emerging pattern of cross-Strait relations that may be influenced by business activities. Taking account of changing trends in scholarly discussions of the cross-Strait relationship, this special issue of China Information presents current research in this field. Unlike studies on top–down processes that affect political and economic interactions between China and Taiwan, several contributions in the special issue highlight bottom–up mechanisms affecting such interactions by examining the identity of Taiwanese businesspeople and migrants, as well as the activities and implications of Taiwanese charitable organizations operating in China. This issue focuses not only on the impact of China on Taiwan, but also the impact of Taiwanese investments, migrants, and exports on Chinese society

    Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome

    Get PDF
    Background: The assembly of the rhizomicrobiome, i.e., the microbiome in the soil adhering to the root, is influenced by soil conditions. Here, we investigated the core rhizomicrobiome of a wild plant species transplanted to an identical soil type with small differences in chemical factors and the impact of these soil chemistry differences on the core microbiome after long-term cultivation. We sampled three natural reserve populations of wild rice (i.e., in situ) and three populations of transplanted in situ wild rice grown ex situ for more than 40 years to determine the core wild rice rhizomicrobiome. Results: Generalized joint attribute modeling (GJAM) identified a total of 44 amplicon sequence variants (ASVs) composing the core wild rice rhizomicrobiome, including 35 bacterial ASVs belonging to the phyla Actinobacteria, Chloroflexi, Firmicutes, and Nitrospirae and 9 fungal ASVs belonging to the phyla Ascomycota, Basidiomycota, and Rozellomycota. Nine core bacterial ASVs belonging to the genera Haliangium, Anaeromyxobacter, Bradyrhizobium, and Bacillus were more abundant in the rhizosphere of ex situ wild rice than in the rhizosphere of in situ wild rice. The main ecological functions of the core microbiome were nitrogen fixation, manganese oxidation, aerobic chemoheterotrophy, chemoheterotrophy, and iron respiration, suggesting roles of the core rhizomicrobiome in improving nutrient resource acquisition for rice growth. The function of the core rhizosphere bacterial community was significantly (p < 0.05) shaped by electrical conductivity, total nitrogen, and available phosphorus present in the soil adhering to the roots. Conclusion: We discovered that nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the core rhizomicrobiome of the wild rice Oryza rufipogon. Our findings suggest that further potential utilization of the core rhizomicrobiome should consider the effects of soil properties on the abundances of different genera. [MediaObject not available: see fulltext.]
    corecore