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Abstract. Symmetric cone (SC) monotone functions and SC-convex functions are real

scalar valued functions which induce Löwner operators associated with a simple Eu-

clidean Jordan algebra to preserve the monotone order and convex order, respectively.

In this paper, for a general simple Euclidean Jordan algebra except for octonion case,

we show that the SC-monotonicity (respectively, SC-convexity) of order r is implied by

the matrix monotonicity (respectively, matrix convexity) of some fixed order r′ (≥ r).

As a consequence, we draw the conclusion that (except for octonion case) a function is
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SC-monotone (respectively, SC-convex) if and only if it is matrix monotone (respectively,

matrix convex).

Key words: Euclidean Jordan algebra, Symmetric cone, matrix-monotone, Löwner

operator, SC-monotone, SC-convex.

1 Introduction

A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉) where (V, 〈·, ·〉) is a finite dimensional

inner product space over the real field R, and (x, y) 7→ x ◦ y : V × V → V is a bilinear

mapping satisfying the following conditions: for all x, y, z ∈ V, (i) x ◦ y = y ◦ x; (ii)

x◦ (x2 ◦ y) = x2 ◦ (x◦ y) with x2 = x◦x; (iii) 〈x◦ y, z〉 = 〈y, x◦ z〉, in which x◦ y is called

the Jordan product of x and y. We assume that there exists an element e ∈ V (called the

unit element) such that x ◦ e = x for all x ∈ V. A Euclidean Jordan algebra is said to be

simple if it is not the direct sum of two Euclidean Jordan algebras. For details regarding

Euclidean Jordan algebras, we refer to the lecture note [14] and the monograph [9].

Let A = (V, ◦, 〈·, ·〉) be a Euclidean Jordan algebra. For any x ∈ V, define

ζ(x) := min
{
k : {e, x, x2, · · · , xk} are linearly dependent

}
.

Then, the rank of A is well defined by r := max{ζ(x) : x ∈ V}. Recall that an element

c ∈ V is said to be idempotent if c2 = c; and an idempotent is said to be primitive if it is

nonzero and can not be written as the sum of two other nonzero idempotents. A finite

set {c1, c2, · · · , cr} of primitive idempotents in V is said to be a Jordan frame if

ci ◦ cj = 0 when i 6= j and c1 + c2 + · · ·+ cr = e.

Then, we have the following important spectral decomposition theorem.

Theorem 1.1 [9, Theorem III.1.2] Suppose (V, ◦, 〈·, ·〉) is a Euclidean Jordan algebra of

rank r. Then, for every x ∈ V, there exist a Jordan frame {c1, · · · , cr} and real numbers

λ1(x), · · · , λr(x), arranged in the decreasing order λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x), such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr.

The numbers λ1(x), . . . , λr(x) (counting multiplicities), uniquely determined by x, are

called the spectral values of x and
∑r

j=1 λj(x)cj the spectral decomposition of x.

Suppose that φ : J ⊆ R→ R is a scalar valued function. Let VJ be a subset in V such

that all x ∈ VJ have the spectral in J . Then, by the spectral decomposition
∑r

j=1 λj(x)cj
of x ∈ VJ , it is natural to define a vector valued function [4, 14] φV : VJ → V by

φV(x) := φ(λ1(x))c1 + φ(λ2(x))c2 + · · ·+ φ(λr(x))cr. (1)
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In a seminal paper [19], Löwner initiated the study for φV in the setting of V = Sn, where

Sn denotes the space of n×n real symmetric matrices, and for X ∈ Sn
J , which is a subset

of Sn such that all eigenvalues of X ∈ Sn
J belong to J , φSn (X) has the expression

φSn (X) := Pdiag(φ(λ1(X)), · · · , φ(λn(X)))P T ,

where P is an n × n orthogonal matrix and λ1(X), λ2(X), . . . , λn(X) are real numbers

arranged in the decreasing order, such that

X = Pdiag(λ1(X), . . . , λn(X))P T .

The result of [19] on the monotonicity of φSn was later extended to φV by Korányi [15].

In addition, Sun and Sun [24] studied the continuous differentiability and strong semis-

moothness of φV , and called φV Löwner operator associated with V in recognition of

Löwner’s contribution.

From [9, Theorem III.2.1] we know that the set of all squares K := {x ∈ V : x ◦ x} in

V is a symmetric cone, i.e., a self-dual homogeneous closed convex cone. So, there is a

natural partial order in V. We write x �K y if x − y ∈ K, and x �K y if x − y ∈ intK.

For any x, y ∈ VJ , let λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) and λ1(y) ≥ λ2(y) ≥ · · · ≥ λr(y) be

the spectral values of x and y, respectively. From [3, Prop. 4.4] or [2, Theorem 23],

r∑
i=1

(λi(x)− λi(y))2 ≤
r∑

i=1

λi(x)2 +
r∑

i=1

λi(y)2 − 2〈x, y〉 = ‖x− y‖2.

By this, it is easy to verify that VJ is open in V if and only if J is open on R. Also, since

λ1(αx+ (1− α)y) ≤ αλ1(x) + (1− α)λ1(y)

λr(αx+ (1− α)y) ≥ αλr(x) + (1− α)λr(y)

for any α ∈ [0, 1] (see [25, Lemma 14]), where λ1(αx + (1− α)y), . . . , λr(αx + (1− α)y)

are the spectral values of αx+(1−α)y, arranged in decreasing order, the set VJ is always

convex. Now we introduce the concepts of SC-monotone and SC-convex functions.

Definition 1.1 Let (V, ◦, 〈·, ·〉) be a simple Euclidean Jordan algebra of rank r. For any

given φ : J ⊆ R→ R, let φV : VJ → V be defined as in (1). Then,

(a) φ is said to be SC-monotone of order r if for any x, y ∈ VJ , it holds that

x �K y =⇒ φV(x) �K φV(y).

(b) φ is said to be SC-convex of order r if for any x, y ∈ VJ and α ∈ (0, 1), it holds that

φV (αx+ (1− α)y) �K αφV(x) + (1− α)φV(y).
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We call φ SC-monotone (SC-convex) if it is SC-monotone (SC-convex) of all orders.

When V is the algebra Sn of n×n real symmetric matrices, Def. 1.1 represents the con-

cepts of matrix monotone and matrix convex functions of order n; when V is the Jordan

spin algebra (see Example 2.4), it gives the concepts of SOC-monotone and SOC-convex

functions [6, 7]. After the seminal paper [19], there are many research works about matrix

monotone and matrix convex functions (see, e.g., [16, 8, 11, 12, 20, 5, 21, 22, 17, 26]).

However, to our best of knowledge, there are few papers to study SC-monotone and SC-

convex functions except that Korányi [15] gave a sufficient and necessary condition for

differentiable SC-monotone functions, and furthermore, this condition is the same as the

one for matrix monotone functions in [13, Theorem 6.6.36].

In this paper, we establish that the SC-monotonicity (respectively, SC-convexity) of

order r of φ is implied by its matrix monotonicity (respectively, matrix convexity) of some

fixed order r′ (≥ r). For example, φ is SC-monotone (respectively, SC-convex) of order

r if it is matrix monotone (respectively, matrix convex) of order 4r; see Theorem 3.1 As

a consequence, we draw the conclusion that φ is SC-monotone (respectively, SC-convex)

if and only if it is matrix monotone (respectively, matrix convex). These results are

achieved by employing the connection between φV and φSn , the results of SOC-monotone

(SOC-convex) functions [23], and the classification of simple Euclidean Jordan algebras.

2 Preliminaries

For any given x ∈ V, we define the following linear operator L(x) of V by

L(x)y := x ◦ y for every y ∈ V.

Let {c1, · · · , cr} be a Jordan frame in a Euclidean Jordan algebra (V, ◦, 〈·, ·〉). Then, from

[9, Lemma IV.1.3], the operators L(cj), j = 1, 2, · · · , r commute and admit a simultaneous

diagonalization. Besides, for i, j ∈ {1, 2, · · · , r}, we denote the eigenspaces

Vii := {x ∈ V : x ◦ ci = x} = Rci
and when i 6= j,

Vij :=

{
x ∈ V : x ◦ ci =

1

2
x = x ◦ cj

}
.

Then, from [9, Theorem IV.2.1], we have the following Peirce decomposition.

Proposition 2.1 The space V is the orthogonal direct sum of spaces Vij (i ≤ j). Also,

Vij ◦ Vij ⊂ Vii + Vjj;

Vij ◦ Vjk ⊂ Vik if i 6= k;

Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.
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Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj, where λ1(x) ≥ λ2(x) ≥
· · · ≥ λr(x) are the spectral eigenvalues of x and {c1, c2, . . . , cr} is the corresponding

Jordan frame. For all i, j ∈ {1, 2, . . . , r}, let Cij(x) be the orthogonal projection operator

onto Vij, from [9, Theorem IV 2.1], it follows that for all i, j = 1, 2, . . . , r,

Cjj(x) = 2L(cj)
2 − L(cj) and Cij(x) = 4L(ci)L(cj) = 4L(cj)L(ci) = Cji(x). (2)

Moreover, the orthogonal projection operators {Cij(x) : i, j = 1, 2, . . . , r} satisfy

Cij(x) = C∗ij(x), C2ij(x) = Cij(x), Cij(x)Ckl(x) = 0 if {i, j} 6= {k, l} (3)

and ∑
1≤i≤j≤r

Cij(x) = I (4)

where C∗ij(x) means the adjoint of Cij(x), and I is the identity operator from V to V.

The following lemma gives the spectral decomposition of the operator L(x), whose

proof can be found in [14, Chapter V, Sec. 5 and Chapter VI, Sec. 4].

Lemma 2.1 Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj. Then, the

linear symmetric operator L(x) has the spectral decomposition

L(x) =
r∑

j=1

λj(x)Cjj(x) +
∑

1≤j<l≤r

1

2
(λj(x) + λl(x)) Cjl(x) (5)

with the spectrum σ(L(x)) consisting of all distinct numbers 1
2
(λj(x) + λl(x)).

Next, we introduce several examples of simple Euclidean Jordan algebras, and recall

the classification theorem of simple Euclidean Jordan algebras.

Example 2.1. The algebra Hn of n × n complex Hermitian matrices. A square

matrix A of complex entries is said to be Hermitian if A∗ := ĀT = A, where ‘bar’ denotes

the complex conjugate, and the superscript ‘T’ means the transpose. Let Hn be the set

of all n×n complex Hermitian matrices. On Hn, let define the Jordan product and inner

product be X ◦ Y := 1
2
(XY + Y X) and 〈X, Y 〉 := trace(XY ). Then, Hn is a Euclidean

Jordan algebra of rank n and dimension n2, with e being the n× n identity matrix I.

There exists an embedding from Hn to S2n which is one-to-one and onto, and also pre-

serves the Jordan algebra structures on the both sides by matrix block multiplication.

As below, we present this embedding for H2. First, we know that H2 is the set which

contains all [
α1 β

β̄ α2

]
, α1, α2 ∈ R and β ∈ C.
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We also know that each complex number a+ bi can be represented as a 2×2 real matrix:

a

[
1 0

0 1

]
+ b

[
0 1

−1 0

]
,

where

[
0 1

−1 0

]
satisfies

[
0 1

−1 0

]2
= −

[
1 0

0 1

]
. Hence, we can embed

[
α1 β

β̄ α2

]
into an element in S4:

H2 3
[
α1 β

β̄ α2

]
7−→


[
α1 0

0 α1

] [
a b

−b a

]
[
a −b
b a

] [
α2 0

0 α2

]
 ∈ S4

where β = a+ ib.

For general n, it is also true that Hn is a Jordan sub-algebra of S2n. The general embed-

ding map THn : Hn ↪→ T (Hn) ⊂ S2n is given by

Hn 3


α1 β · · · γ

β̄ α2 · · · δ
...

...
. . .

...

γ̄ δ̄ · · · αn

 7−→



[
α1 0

0 α1

] [
a b

−b a

]
· · ·

[
c d

−d c

]
[
a −b
b a

] [
α2 0

0 α2

]
· · ·

[
e f

−f e

]
...

...
. . .

...[
c −d
d c

] [
e −f
f e

]
. . .

[
αn 0

0 αn

]


∈ S2n

where β = a+ ib, γ = c+ id, δ = e+ if . By matrix block multiplication, it can be seen

the embedding THn preserves the Jordan algebra structures

THn(x ◦Hn y) = THn(x) ◦S2n THn(y) ∀ x, y ∈ Hn.

Example 2.2. The algebra Qn of n × n quaternion Hermitian matrices. The

linear space of quaternions over R, denoted by Q, is 4-dimensional vector space [27] with

a basis {1, i, j, k}. This space becomes an associated algebra via the multiplication table:

1 i j k

1 1 i j k

i i −1 k −j
j j −k −1 i

k k j −i −1
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For any x = x01+x1i+x2j+x3k ∈ Q, we define its real part by <(x) := x0, its conjugate

by x̄ := x01 − x1i − x2j − x3k, and its norm by |x| =
√
xx̄. A square matrix A with

quaternion entries is called Hermitian if A coincides with its conjugate transpose. Let

Qn be the set of all n× n quaternion Hermitian matrices. For any X, Y ∈ Qn, let

X ◦ Y :=
1

2
(XY + Y X) and 〈X, Y 〉 := <(trace(XY )).

Then, Qn is a Euclidean Jordan algebra of rank n and dimension n(2n − 1) with e

being the n × n identity matrix I. Analogous to complex number, each quaternion

x = a1+bi+cj+dk ∈ Q can be represented as a 4×4 real matrix


a b c d

−b a −d c

−c d a −b
−d −c b a


which is also equivalent to

a


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+ b


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

+ c


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

+ d


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .

Following the same lines for Hn, we can embed Qn into S4n such that Qn can be viewed

as a Jordan sub-algebra of S4n. Again, the embedding map under the case for Q2 is

Q2 3
[
α1 x

x̄ α2

]
7−→




α1 0 0 0

0 α1 0 0

0 0 α1 0

0 0 0 α1




a b c d

−b a −d c

−c d a −b
−d −c b a



a −b −c −d
b a d −c
c −d a b

d c −b a



α2 0 0 0

0 α2 0 0

0 0 α2 0

0 0 0 α2




∈ S8

where x = a1 + bi+ cj + dk.

Moreover, the general embedding map TQn : Qn ↪→ T (Qn) ⊂ S4n under this case is given

by

Qn 3


α1 x · · · y

x̄ α2 · · · z
...

...
. . .

...

ȳ z̄ · · · αn

 7−→
7






α1 0 0 0

0 α1 0 0

0 0 α1 0

0 0 0 α1




a b c d

−b a −d c

−c d a −b
−d −c b a

 · · ·


e f g h

−f e −h g

−g h e −f
−h −g f e



a −b −c −d
b a d −c
c −d a b

d c −b a



α2 0 0 0

0 α2 0 0

0 0 α2 0

0 0 0 α2

 · · ·


p q r s

−q p −s r

−r s p −q
−s −r q p


...

...
. . .

...
e −f −g −h
f e h −g
g −h e f

h g −f e



p −q −r −s
q p s −r
r −s p q

s r −q p

 · · ·


αn 0 0 0

0 αn 0 0

0 0 αn 0

0 0 0 αn





∈ S4n

where x = a1 + bi+ cj + dk, y = e1 + fi+ gj + hk and z = p1 + qi+ rj + sk.

In summary, we construct an embedding from Hn or Qn to Sm respectively for certain

m. Since the embedding is linear and preserves the Jordan algebra structures on both

sides, it can be seen Löwner operator commutes with the embedding, which means that

for all x ∈ Hn and y ∈ Qn, there have

φS2n(THn(x)) = THn(φHn(x)) and φS4n(TQn(y)) = TQn(φQn(y)). (6)

In the above, we present an embedding from a Jordan algebra Hn or Qn to a Jordan

sub-algebras of Sm respectively for certain m. Indeed, there is an alternative way to

interpret this. For any A = A1 + A2j ∈ Mn(Q), its complex adjoint matrix, symbolized

χA, is defined by [27] :

χA =

(
A1 A2

−Ā2 Ā1

)
∈M2n(C).

It is shown that if A ∈ Qn then χA ∈ H2n [27, Theorem 4.2(6)]. This is an embedding

and preserves operations. There is also an adjoint matrix πB ∈ M4n(R) associated with

B ∈ M2n(C). Then, we obtain that the composite π ◦ χ(A) ∈ S4n for any A ∈ Qn. It is

obvious to see that the composite π ◦ χ is a Jordan algebra embedding from Qn to S4n

as expected.

Example 2.3. The algebra O3 of 3× 3 octonion Hermitian matrices. The space

of octonion, denoted by O, is a 8-dimensional real vector space with basis {1, e1, . . . , e7}.
The space becomes a nonassociative algebra via the following multiplication table [1]:

Note that O is a non-commutative and non-associative algebra. For an element x =

x01 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7 ∈ O, we define its real part by
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1 e1 e2 e3 e4 e5 e6 e7
1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

<(x) := x0, its conjugate by x̄ := x01−x1e1−x2e2−x3e3−x4e4−x5e5−x6e6−x7e7, and

its norm by |x| :=
√
xx̄. As in the case of a quaternion Hermitian matrix, we may define

an octonion Hermitian matrix. Suppose O3 is the set of all 3 × 3 octonion Hermitian

matrices. On O3, let the Jordan product and inner product be

X ◦ Y :=
1

2
(XY + Y X) and 〈X, Y 〉 := <(trace(XY )).

Then, O3 is a Euclidean Jordan algebra of rank 3 with e being the 3× 3 identity matrix,

and is a real vector space of dimension 27.

Example 2.4. The Jordan spin algebra Jn. Consider Rn endowed with the usual

inner product. For any x ∈ Rn, write x =

(
x0
x̄

)
with x0 ∈ R and x̄ ∈ Rn−1. Define

x ◦ y =

(
x0
x̄

)
◦
(
y0
ȳ

)
:=

(
〈x, y〉

x0ȳ + y0x̄

)
.

Then, (Rn, ◦, 〈·, ·〉) is an Euclidean Jordan algebra, and we denote it by Jn. The rank of

the Euclidean Jordan algebra Jn is 2 and its unit element is given by e =

(
1

0

)
. In this

algebra, the set of squares is also called the second-order cone or the Lorentz cone.

Theorem 2.1 [9, Chapter V] Every simple Euclidean Jordan algebra is isomorphic to

one of the following

(i) The Jordan spin algebra Jn.

(ii) The algebra Sn of n× n real symmetric matrices.

(iii) The algebra Hn of all n× n complex Hermitian matrices.

(iv) The algebra Qn of all n× n quaternion Hermitian matrices.

(v) The algebra O3 of all 3× 3 octonion Hermitian matrices.
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3 Main result

For simplicity, we employ Sn
+,Hn

+ and Qn
+ to denote the corresponding symmetric cones

in Sn,Hn and Qn, respectively. In other words, they represent

Sn
+ = {x ◦ x |x ∈ Sn}, Hn

+ = {x ◦ x |x ∈ Hn} and Qn
+ = {x ◦ x |x ∈ Qn}.

To achieve our main result, we will show that the embeddings we construct in Examples

2.1-2.2 preserve their conic orders.

Lemma 3.1 Suppose that V is the algebra Hn of n×n complex Hermitian matrices. The

embedding THn defined as in Example 2.1 keeps the conic order in the following sense:

x �Hn
+
y ⇐⇒ THn(x) �S2n+ THn(y) ∀x, y ∈ Hn.

Proof. (⇒) Suppose that x �Hn
+
y. Then, there exists an a ∈ Hn such that x− y = a2.

Since THn preserves Jordan algebra structure, we have

THn(x)− THn(y) = THn(x− y) = THn(a2) = (THn(a))2 ∈ S2n
+

which gives the desired result.

(⇐) Suppose that THn(x) �S2n+ THn(y). Then, there exists X, Y ∈ S2n such that THn(x) =

X and THn(y) = Y . By assumption of X �S2n+ Y , there exists an A ∈ S2n such that

X − Y = A2. Again, since THn preserves Jordan algebra structure, we have

x− y = T−1Hn (X)− T−1Hn (Y ) = T−1Hn (X − Y ) = T−1Hn (A2) = (T−1Hn (A))2 ∈ Qn
+

which gives the desired result. 2

Next we present three Lemmas which are needed to establish our main result.

Lemma 3.2 Suppose that V is the algebra Hn of n×n complex Hermitian matrices. For

any given φ : J → R, let φV : VJ → V be defined as in (1). Then,

(a) φ is SC-monotone of order n associated with Hn if φ is matrix monotone of order

2n.

(b) φ is SC-convex of order n associated with Hn if φ is matrix convex of order 2n.

Proof. (a) Suppose x �Hn
+
y and φ is matrix monotone of order 2n. First, Lemma 3.1

indicates THn(x) �S2n+ THn(y). Then, from assumption of matrix monotonicity, we have

φS2n(THn(x)) �S2n+ φS2n(THn(y)).

10



This together with equation (6) implies THn(φHn(x)) �S2n+ THn(φHn(y)). Applying Lemma

3.1 again, we obtain φHn(x) �Hn
+
φHn(y).

(b) Suppose φ is matrix convex of order 2n. Then, for 0 ≤ α ≤ 1, we know

φS2n (αTHn(x) + (1− α)THn(y)) �S2n+ αφS2n(THn(x)) + (1− α)φS2n(THn(y)).

In addition, the linearity of THn and equation (6) imply

φS2n (THn(αx+ (1− α)y)) �S2n+ αTHn(φHn(x)) + (1− α)THn(φHn(y)).

Using equation (6) and linearity of THn again, we have

THn (φHn(αx+ (1− α)y)) �S2n+ THn (αφHn(x) + (1− α)φHn(y)) .

Then, applying Lemma 3.1 yields

φHn(αx+ (1− α)y) �Hn
+
αφHn(x) + (1− α)φHn(y)

which is the desired result. 2

Analogous to Lemma 3.1, there holds

x �Qn
+
y ⇐⇒ TQn(x) �S4n+ TQn(y) ∀x, y ∈ Qn

which also lead to the following lemma by similar arguments as in Lemma 3.2.

Lemma 3.3 Suppose that V is the algebra Qn of n×n complex Hermitian matrices. For

any given φ : J → R, let φV : VJ → V be defined as in (1). Then,

(a) φ is SC-monotone of order n associated with Qn if φ is matrix monotone of order

4n.

(b) φ is SC-convex of order n associated with Qn if φ is matrix convex of order 4n.

Lemma 3.4 [23, Theorem 3.1, Theorem 4.1] Suppose that V is the Jordan spin algebra

Jn. For any given φ : J → R, let φV : VJ → V be defined as in (1). Then,

(a) φ is SOC-monotone if φ is matrix-monotone of order 2.

(b) φ is SOC-convex if φ is matrix-convex of order 2.

The main idea here is that we employ embeddings THn and TQn to provide a sufficient

condition for φ being SC-monotone (SC-convex) by its matrix monotonicity (matrix

convexity). Now, together with some result in [23], we prsent our main result.
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Theorem 3.1 Suppose that (V, ◦, 〈·, ·〉) is a simple Euclidean Jordan algebra of rank n

except for O3. For any given φ : J → R, let φV : VJ → V be defined as in (1). Then,

(a) φ is matrix monotone (matrix convex) of order n if it is SC-monotone (SC-convex)

of order n.

(b) φ is SC-montone (SC-convex) of order n associated with V if it is matrix monotone

(matrix convex) of order 4n.

Proof. (a) When n > 3, Theorem 2.1 says V is isomorphic to the algebra Sn, Hn, or Qn.

Note that a real number is a special complex number, which is also a special quaternion.

The SC-monotonicity (SC-convexity) of order n of φ implies that φ is matrix monotone

(matrix convex) of order n. When n = 2, the SC-monotonicity (SC-convexity) of order

2 of φ is equivalent to the SOC-monotonicity (SOC-convexity) (see [7]). Thus, from [23],

it follows that φ is matrix monotone (matrix convex) of order 2.

(b) When n > 3, Theorem 2.1 says V is isomorphic to the algebra Sn, Hn, or Qn.

Suppose φ is matrix monotone (matrix convex) of order 4n. Then, we have that φ is

also matrix monotone (matrix convex) of order 2n (order n). Thus, applying Theorem

2.1 and Lemmas 3.2-3.3, φ is SC-monotone (SC-convex) of order n. When n = 2, from

[23] we know that φ is SOC-monotone (SOC-convex), which is equivalent to saying that

φ SC-monotone (SC-convex) of order 2 due to Theorem 2.1. 2

Remark 3.1 It should be pointed out that for the SC-monotonicity of continuously dif-

ferentiable φ, Korányi [15] showed that φ is SC-monotone of order n if and only if φ is

matrix-monotone of order n. Thus, for the SC-monotonicity, the result of Theorem 3.1

is weaker than that of [15] obtained via direct analysis. However, for the SC-convexity,

to our best knowledge, the result of Theorem 3.1 is new. For application in symmetric

cone optimization it is very important to know which class of functions is SC-convex.

Theorem 3.1 has good contribution in the literature in our opinion because it tells us that

all matrix convex functions must be SC-convex.

As a consequence of Theorem 3.1, we have the following corollary which builds a bridge

between matrix monotonicity (matrix convexity) and SC-monotonicity (SC-convexity).

Corollary 3.1 Let (V, ◦, 〈·, ·〉) be a simple Euclidean Jordan algebra except for O3. For

any given φ : J → R, let φV : VJ → V be defined as in (1). Then, φ is SC-monotone (re-

spectively, SC-convex) associated with V if and only if it is matrix monotone (respectively,

matrix convex).

12



Unfortunately our method can not be applied to the only excetional case O3. There

are two reasons to explain this. First, it seems imposible to embed O3 into some Sm.

Second, there exists a discrepancy between φSm (L(x)) and L(φO3(x)). For any x ∈ O3
J ,

suppose x has the spectral decomposition x =
∑3

j=1 λj(x)cj, where λ1(x) ≥ λ2(x) ≥ λ3(x)

are the eigenvalues of x and {c1, c2, c3} (depending on x) is the corresponding Jordan

frame. Let L(x), Cjl(x) be defined as in Section 2. We have

L(φO3(x)) =
3∑

j=1

φ(λj(x))Cjj(x) +
∑

1≤j<l≤3

φ(λj(x)) + φ(λl(x))

2
Cjl(x) ∀x ∈ VJ . (7)

Note here that φO3(x) =
∑
φ(λj(x))cj. Let {u1, u2, . . . , u27} be an orthonormal basis

of O3. Let L(x), Cjl(x) be the corresponding matrix representations of L(x), Cjl(x) with

respect to the basis {u1, u2, . . . , u27}. This means that for 1 ≤ a, b ≤ 27

[L(x)]a,b = 〈ua,L(x)ub〉 and [Cjl(x)]a,b = 〈ua, Cjl(x)ub〉.

Since O3 is a Euclidean Jordan algebra, L(x) and Cjl(x) are self-adjoint. Thus, L(x) and

Cjl(x) are real symmetric matrices in S27
J . It follows that

L(φO3(x)) =
3∑

j=1

φ(λj(x))Cjj(x) +
∑

1≤j<l≤3

φ((λj(x)) + φ(λl(x))

2
Cjl(x), ∀x ∈ VJ .

For any h ∈ O3, there exists a unique h̃ ∈ R27 such that h =
∑27

i=1 h̃iui. Then, it is

obvious to check

〈h, φO3(x) ◦ k〉O3 = 〈h,L(φO3(x))k〉O3 = 〈h̃, L(φO3(x))k̃〉R27 ∀ h, k ∈ O3,

which implies

φO3(x) �O3
+
φO3(y)⇐⇒ L(φO3(x)) �S27+ L(φO3(y)).

However, on the other hand, we know

φS27(L(x)) =
3∑

j=1

φ(λj(x))Cjj(x) +
∑

1≤j<l≤3

φ

(
λj(x) + λl(x)

2

)
Cjl(x). (8)

Note here that

L(x) =
3∑

j=1

λj(x)Cjj(x) +
∑

1≤j<l≤3

λj(x) + λl(x)

2
Cjl(x).

Thus, the discrepency between φS27(L(x)) and L(φO3(x)) is

φS27(L(x))− L(φO3(x)) =
∑

1≤j<l≤3

[
φ

(
λj(x) + λl(x)

2

)
− φ((λj(x)) + φ(λl(x))

2

]
Cjl(x),
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which is complicated to handle. Therefore, we exclude this exceptional case O3 in the

conclusion.

To close this section, we take a careful look at some examples of SC-monotone func-

tions. By applying [26, Example 3] and Corollary 3.1, the following functions are SC-

monotone.

Example 3.1 For a general simple Euclidean Jordan algebra (V, ◦, 〈·, ·〉) except for O3,

(i) φ(t) = tq (t ≥ 0) is SC-monotone associated with V if and only if 0 ≤ q ≤ 1.

(ii) φ(t) = −t−q (t > 0) is SC-monotone associated with V if and only if 0 ≤ q ≤ 1.

(iii) φ(t) = − cot(t) (0 < t < π) is SC-monotone associated with V.

(iv) φ(t) = lnq(x) (t > 0) with q ∈ (0, 1] is SC-monotone associated with V.

Moreover, [26, Example 35] and Corollary 3.1 indicate that the following functions are

SC-convex.

Example 3.2 For a general simple Euclidean Jordan algebra (V, ◦, 〈·, ·〉) except for O3,

(i) φ(t) = − ln t (t > 0) is SC-convex associated with V.

(ii) φ(t) = −tr (t ≥ 0) with r ∈ [1, 2] and φ(t) = −tr (t > 0) with r ∈ [−1, 0] are

SC-convex associated with V.

(iii) the entropy function φ(t) = t ln t (t ≥ 0) is SC-convex associated with V.

From the SC-monotonicity of the function in Example 3.1(i), we readily recover the

results of [18, Corollary 9] and [10, Prop. 8]. Moreover, from the SC-monotonicity of the

function in Example 3.1(ii), we have that x �K y �K 0 if and only if y−1 �K x−1 �K 0.

On the other hand, we show the SC-convexity of some well-known barrier functions:

logarithmic barrier function − ln t (t > 0) and the power function −tr (t > 0) with

r ∈ [−1, 0), which can be employed in the interior point methods for for solving the

symmetric cone optimization problems.
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