520 research outputs found

    Does generalization performance of lql^q regularization learning depend on qq? A negative example

    Full text link
    lql^q-regularization has been demonstrated to be an attractive technique in machine learning and statistical modeling. It attempts to improve the generalization (prediction) capability of a machine (model) through appropriately shrinking its coefficients. The shape of a lql^q estimator differs in varying choices of the regularization order qq. In particular, l1l^1 leads to the LASSO estimate, while l2l^{2} corresponds to the smooth ridge regression. This makes the order qq a potential tuning parameter in applications. To facilitate the use of lql^{q}-regularization, we intend to seek for a modeling strategy where an elaborative selection on qq is avoidable. In this spirit, we place our investigation within a general framework of lql^{q}-regularized kernel learning under a sample dependent hypothesis space (SDHS). For a designated class of kernel functions, we show that all lql^{q} estimators for 0<q<0< q < \infty attain similar generalization error bounds. These estimated bounds are almost optimal in the sense that up to a logarithmic factor, the upper and lower bounds are asymptotically identical. This finding tentatively reveals that, in some modeling contexts, the choice of qq might not have a strong impact in terms of the generalization capability. From this perspective, qq can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..Comment: 35 pages, 3 figure

    The Impact of Enterprise Social Media Use on Overload: The Moderating Role of Communication Visibility

    Get PDF
    Prior research has mainly focused on the positive effects of information technology (IT) use. However, emerging research begins to highlight the importance of considering the dark side of IT use. This study examines how enterprise social media (ESM) use (i.e., work- and social- related use) affects employees’ perceived overload (i.e., information and social overload). In addition, we propose that communication visibility moderates the nonlinear relationship between ESM use and overload. The theoretical and practical implications are also discussed

    ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Get PDF
    Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT)-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE)) for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing

    SpectralDiff: A Generative Framework for Hyperspectral Image Classification with Diffusion Models

    Full text link
    Hyperspectral Image (HSI) classification is an important issue in remote sensing field with extensive applications in earth science. In recent years, a large number of deep learning-based HSI classification methods have been proposed. However, existing methods have limited ability to handle high-dimensional, highly redundant, and complex data, making it challenging to capture the spectral-spatial distributions of data and relationships between samples. To address this issue, we propose a generative framework for HSI classification with diffusion models (SpectralDiff) that effectively mines the distribution information of high-dimensional and highly redundant data by iteratively denoising and explicitly constructing the data generation process, thus better reflecting the relationships between samples. The framework consists of a spectral-spatial diffusion module, and an attention-based classification module. The spectral-spatial diffusion module adopts forward and reverse spectral-spatial diffusion processes to achieve adaptive construction of sample relationships without requiring prior knowledge of graphical structure or neighborhood information. It captures spectral-spatial distribution and contextual information of objects in HSI and mines unsupervised spectral-spatial diffusion features within the reverse diffusion process. Finally, these features are fed into the attention-based classification module for per-pixel classification. The diffusion features can facilitate cross-sample perception via reconstruction distribution, leading to improved classification performance. Experiments on three public HSI datasets demonstrate that the proposed method can achieve better performance than state-of-the-art methods. For the sake of reproducibility, the source code of SpectralDiff will be publicly available at https://github.com/chenning0115/SpectralDiff
    corecore