3,152 research outputs found

    Optical Monitoring of the Seyfert Galaxy NGC 4151 and Possible Periodicities in the Historical Light Curve

    Full text link
    We report B, V, and R band CCD photometry of the Seyfert galaxy NGC 4151 obtained with the 1.0-m telescope at Weihai Observatory of Shandong University and the 1.56-m telescope at Shanghai Astronomical Observatory from 2005 December to 2013 February. Combining all available data from literature, we have constructed a historical light curve from 1910 to 2013 to study the periodicity of the source using three different methods (the Jurkevich method, the Lomb-Scargle periodogram method and the Discrete Correlation Function method). We find possible periods of P_1=4\pm0.1, P_2=7.5\pm0.3 and P_3=15.9\pm0.3 yr.Comment: 8 pages, 5 figures, Accepted by Research in Astronomy and Astrophysic

    Novel Microfiber Sensor and Its Biosensing Application for Detection of hCG Based on a Singlemode-Tapered Hollow Core-Singlemode Fiber Structure

    Get PDF
    A novel microfiber sensor is proposed and demonstrated based on a singlemode-tapered hollow core -singlemode (STHS) fiber structure. Experimentally a STHS with taper waist diameter of 26.5 μm has been fabricated and RI sensitivity of 816, 1601.86, and 4775.5 nm/RIU has been achieved with RI ranges from 1.3335 to 1.3395 , from 1.369 to 1.378, and from 1.409 to 1.4175 respectively, which agrees very well with simulated RI sensitivity of 885, 1517, and 4540 nm/RIU at RI ranges from 1.3335 to 1.337, from 1.37 to 1.374, and from 1.41 to 1.414 . The taper waist diameter has impact on both temperature and strain sensitivity of the sensor structure: (1) the smaller the waist diameter, the higher the temperature sensitivity, and experimentally 26.82 pm/°C has been achieved with a taper waist diameter of 21.4 μm; (2) as waist diameter decrease, strain sensitivity increase and 7.62 pm/με has been achieved with a taper diameter of 20.3 μm. The developed sensor was then functionalized for human chorionic gonadotropin (hCG) detection as an example for biosensing application. Experimentally for hCG concentration of 5 mIU/ml, the sensor has 0.5 nm wavelength shift, equivalent to limit of detection (LOD) of 0.6 mIU/ml by defining 3 times of the wavelength variation (0.06 nm) as measurement limit. The biosensor demonstrated relatively good reproducibility and specificity, which has potential for real medical diagnostics and other applications

    CRIT:Identifying RNA-binding protein regulator in circRNA life cycle via non-negative matrix factorization

    Get PDF
    Circular RNAs (circRNAs) are endogenous non-coding RNAs that regulate gene expression and participate in carcinogenesis. However, the RNA-binding proteins (RBPs) involved in circRNAs biogenesis and modulation remain largely unclear. We developed the circRNA regulator identification tool (CRIT), a non-negative matrix-factorization-based pipeline to identify regulating RBPs in cancers. CRIT uncovered 73 novel regulators across thousands of samples by effectively leveraging genomics data and functional annotations. We demonstrated that known RBPs involved in circRNA control are significantly enriched in these predictions. Analysis of circRNA-RBP interactions using two large cross-linking immunoprecipitation (CLIP) databases, we validated the consistency between CRIT prediction and the CLIP experiments. Furthermore, newly discovered RBPs are functionally connected with authentic circRNA regulators by various biological associations, such as physical interaction, similar binding motifs, common transcription factor modulation, and co-expression. When analyzing RNA sequencing (RNA-seq) datasets after short hairpin RNA (shRNA)/small interfering RNA (siRNA) knockdown, we found several novel RBPs that can affect global circRNA expression, which strengthens their role in the circRNA life cycle. The above evidence provided independent confirmation that CRIT is a useful tool to capture RBPs in circRNA processing. Finally, we show that authentic regulators are more likely the core splicing proteins and peripheral factors and usually harbor more alterations in the vast majority of cancers

    Optical and Gamma-Ray Variability Behaviors of 3C 454.3 from 2006 to 2011

    Full text link
    We present our photometric monitoring of a flat spectrum radio quasar (FSRQ) 3C 454.3 at Yunnan observatories from 2006 to 2011. We find that the optical color of 3C 454.3 shows obvious redder-when-brighter trend, which reaches a saturation stage when the source is brighter than 15.15 mag at V band. We perform a simulation with multiple values of disk luminosity and spectral index to reproduce the magnitude-color diagram. The results show that the contamination caused by the disk radiation alone is difficult to produce the observed color variability. The variability properties during the outburst in December 2009 are also compared with γ\gamma-ray data derived from Fermi γ\gamma-ray space telescope. The flux variation of these two bands follow a linear relation with FγFR1.14±0.07F_{\gamma} \propto F_R^{1.14\pm0.07}, which provides an observational evidence for external Compton process in 3C 454.3. Meanwhile, this flux correlation indicates that electron injection is the main mechanism for variability origin. We also explore the variation of the flux ratio Fγ/FRF_{\gamma}/F_R and the detailed structures in the lightcurves, and discuss some possible origins for the detailed variability behaviors.Comment: accepted for publication in The Astrophysical Journal, 5 figures, 2 table
    corecore