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Circular RNAs (circRNAs) are endogenous non-coding RNAs
that regulate gene expression and participate in carcinogenesis.
However, the RNA-binding proteins (RBPs) involved in
circRNAs biogenesis and modulation remain largely unclear.
We developed the circRNA regulator identification tool
(CRIT), a non-negative matrix-factorization-based pipeline to
identify regulating RBPs in cancers. CRIT uncovered 73 novel
regulators across thousands of samples by effectively leveraging
genomics data and functional annotations. We demonstrated
that known RBPs involved in circRNA control are significantly
enriched in these predictions. Analysis of circRNA-RBP inter-
actions using two large cross-linking immunoprecipitation
(CLIP) databases, we validated the consistency between CRIT
prediction and the CLIP experiments. Furthermore, newly
discovered RBPs are functionally connected with authentic
circRNA regulators by various biological associations, such as
physical interaction, similar binding motifs, common tran-
scription factor modulation, and co-expression. When
analyzing RNA sequencing (RNA-seq) datasets after short
hairpin RNA (shRNA)/small interfering RNA (siRNA) knock-
down, we found several novel RBPs that can affect global
circRNA expression, which strengthens their role in the
circRNA life cycle. The above evidence provided independent
confirmation that CRIT is a useful tool to capture RBPs in
circRNA processing. Finally, we show that authentic regulators
are more likely the core splicing proteins and peripheral factors
and usually harbor more alterations in the vast majority of
cancers.
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INTRODUCTION
Circular RNAs (circRNAs) are endogenous non-coding RNAs pro-
duced by the circularization of specific exons. They has been widely
implicated in neurodegenerative disorders, cardiovascular diseases,
and cancers.1–3 circRNAs modulate carcinogenesis via a variety of
elegant mechanisms such as acting as microRNA (miRNA) sponges,
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translating into novel peptides, and epigenetic regulating.3–5 Notably,
circRNAs also demonstrate their diagnostic values since they can be
detected both in formalin-fixed, paraffin-embedded (FFPE) tissues
and human biofluids, and their expression is usually associated
with cancer progression.6–8

Recently, several RNA-binding proteins (RBPs) have been shown to
control circRNA biogenesis.9–13 For example, the quaking (QKI) pro-
tein family, which contains the KH domain, was previously reported
to play an essential role in circRNA formation during the epithelial-
to-mesenchymal transition.10 It regulates the circ-ZKSCAN1 circu-
larization, which is associated with cancer stemness and inhibits
hepatocellular carcinoma growth.14 These RBPs bind to flanking in-
tronic regions upstream or downstream of circ-forming exons. Except
for stacking into homo/heterodimers for circRNA regulation in trans,
several RBPs can also influence Alu pairing in cis (such as ADAR and
DHX9). Another group of RBPs can directly bind to a full-length
circRNA “body sequence,” therefore regulating its more broad behav-
iors in cells.15,16 These RBPs have been proposed to control circRNAs
N6-methyladenosine (m6A) modification, localization, stability, and
translation. For instance, ribosome-associated factors can regulate the
translation of circ-ZNF609 in cap-independent manners.17 As both
groups of RBPs control circRNAmetabolism and cellular functioning
during the whole life cycle, we collectively defined them as circRNA
“regulators” in this study.

While potential protein regulators of circRNA have continuously been
identified, the progress in this field is seriously delayed, especially when
The Authors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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compared with the rapid identification of circRNA downstream
targets. This situation is mainly hampered by the fact that few compu-
tational frameworks have been rationally designed to systematically
evaluate the involvement of regulating RBPs in the circRNA life cycle.
As alternative approaches, researchers have to largely rely on either
sequencing of immuno-precipitated RNAs after cross-linking with in-
dividual RBPs or genome-wide small interfering RNA (siRNA)
screening of hundreds of RBPs, which are both time consuming and
labor intensive.18–20 Several groups have addressed a related, but not
equivalent, problem, i.e., prediction of RBP-circRNA-binding sites
by deep-learning architecture.21,22 But these binding site embedding
methods relied heavily on training datasets and only obtained limited
RBP-specific models (from several to dozens of RBPs), which makes
the extrapolation to other RBPs without canonical binding domains
or novel circRNA-regulating RBPs in question. Furthermore, previous
circRNA regulators identified either from the high-throughput screen
or deep-learning prediction are usually derived from cells-based
models or resources; whether or not they have physio-pathological im-
pacts needs further confirmation.19,20

Here, we proposed a novel bioinformatics pipeline named the
circRNA regulator identification tool (CRIT) to identify circRNA reg-
ulators directly from thousands of tissue samples via examining geno-
mics, transcriptomics, and interactomics databases across 12 cancer
types. CRIT integrates gene alterations, clinical significance, gene-
circRNA expression correlation, and RBP-RNA-binding data into a
statistical framework. CRIT can uncover both previously established
circRNA regulators and novel RBPs, which are supported by multiple
biological pieces of evidence.

RESULTS
Curation of various cancer omics data for human RBPs

RBPs control the entire RNA life cycle such as splicing, transporta-
tion, translation, and stability, therefore they are tightly connected
with the cancer mechanism.23,24 We reasoned that, as pathological/
physiological-relevant circRNA regulators, these RBPs should have
the following characteristics. (1) Since the expression of regulators
could affect circRNA expression, regulators and some circRNAs
should therefore have a strong expression correlation. (2) Regulators
should have at least one of the following alterations, point mutation,
copy-number variation, and abnormal mRNA expression, in the can-
cer sample. (3) The above alterations on regulators have an impact on
the survival time of patients. (4) Regulators’ biological role should be
closely related to the Gene Ontology (GO) terms “mRNA splicing, via
spliceosome,” which indicate the participation in the formation of
circRNA. (5) Regulators can physically interact with some circRNAs.

Cluster RBPs with non-negative matrix factorization

Based on the above biologically meaningful features, we established
a CRIT pipeline to identify putative regulators by integratively
analyzing various cancer omics data including mutation, copy-num-
ber variation (CNV), expression, patient follow-up information,
function annotation, and protein-RNA interaction (Figure 1). The
pipeline is described in detail in the materials and methods and the
supplemental methods. The component genes in each cluster are
listed in (Table S1).

To support the validity of CRIT’s result and the analysis pipeline, we
performed a comparison of regulators detected by CRIT with the re-
sults based on siRNA screens or published functional studies. Previ-
ously, Li et al. set up a circmCherry-expression screening system and
identified RBPs potentially involved in circRNA regulation.13 Among
the 103 RBPs that influenced the mCherry fluorescence with >1.5-
fold change, CRIT correctly identified 13 of 90 candidate regulators
in cluster 23 (Fisher’s exact test p = 0.00201). It should be noted that
the above cell-based screen used artificial constructs under unphysio-
logical conditions and may promote suspicious protein-circRNA sig-
nals. Thus, to further establish the accuracy of CRIT’s result, we manu-
ally collected 19 well-established circRNA regulators (Table S2), which
have been thoroughly verified by multiple assays both in vivo and
in vitro.3,25–29 CRIT correctly identified six out of the 19 established
regulators (Table S2) (Fisher’s exact test p = 0.00112). Finally, we com-
bined the results from either vector screen or functional studies to form
a set of 118 gold-standard circRNA regulators (hereinafter called “gold
regulators”). Among the 90 RBPs clustered in group 23, there are 17
gold regulators (Fisher’s exact test p = 0.00012; Table S1). Thus, we re-
gard all RBPs in this group as putative circRNA regulators.

The agreement between the CRIT approach and the CLIP

experiments is strong

Sequencing the immunoprecipitated RNAs after cross-linking with
the specific RBP (CLIP-seq) can reveal the RBP-RNA interaction
and binding sites. Although mRNAs are usually the primary focus
of such experiments, circRNA-RBP interactions could also be recov-
ered. For example, the PORSTAR3 database has archived 112 poten-
tial circRNA-binding RBPs derived from public CLIP-seq datasets.30

Among them, there are 19 intersecting RBPs with the candidate reg-
ulators. Fisher’s exact test shows that candidate regulators are signif-
icantly enriched with such circRNA-binding RBPs using either 1,344
RBPs (Fisher’s exact test p = 7.7� 10�5) or total genes (Fisher’s exact
test p = 7.8 � 10�30) as background.

Several technical difficulties in CLIP experiments often lead to suspi-
cious circRNA-RBP interactions.31 Therefore, the developers of the
ENCORI database score each circRNA-binding RBP by the number
of supported experiments.32 This score could be regarded as a confi-
dence of each circRNA-binding RBP. Thus, we separated the
circRNA-binding RBPs fromENCORI into five sub-lists based on their
stringency. The result of Fisher’s exact test also shows that candidate
regulators are significantly enriched under each of the different strin-
gencies (Figure 2A). For example, at the highest confidence stringency
R5, there are only 27 CLIP-proved circRNA-binding RBPs, which
overlapped with two of the candidate RBPs (Figure 2A; Fisher’s exact
test p = 3.3 � 10�8 with 1,344 RBP backgrounds or 5.8 � 10�25 with
total gene background). Overall, based on the above analysis of
circRNA-RBP interactions, using two large CLIP databases, we vali-
dated the consistency between our CRIT prediction and the CLIP
experiments.
Molecular Therapy: Nucleic Acids Vol. 30 December 2022 399
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Figure 1. Construction and overview of the CRIT pipeline

(A) A rm value indicates the Spearman’s rank correlation coefficients between genes and circRNAs based on the MiOncoCirc database. (B) Three weighted Z scores, which

indicate gene alterations, clinical significance, and GO functional information, were developed to evaluate the involvement of each gene in circRNA regulation. (C) C value

indicates the number of circRNAs with which each protein interacts. (D) Cluster RBPs with non-negative matrix factorization based on the feature matrix. (E) Four strong

pieces of evidence were used to validate candidate regulators. (F) Two weak pieces of evidence were used to validate candidate regulators.
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Candidate regulators grouped by non-negative matrix

factorization (NMF) are supported by other biological

associations

Westudied the functional associations between the 73 (excludes 17 gold
regulators from 90 RBPs) candidates and the gold circRNA regulators.
Among the putative regulators, we found that 57 of them have signifi-
cantly more physical interactions with the gold regulators (Table S3)
(false discovery rate [FDR] < 0.05). For example, the YTHdomain con-
taining1 (YTHDC1) interactome is enrichedwith 17gold circRNAreg-
ulators (Figure 2C). These interacting proteins include 7 polysome-
associated proteins (FMR1, ILF2, ILF3, HNRNPH2, SNRPA, SNRPC,
and HNRNPC) and several splicing and processing factors (PCBP1,
NUDT21, U2AF1, U2AF2, and SCAF1).9,33,34 In addition, YTHDC1
is also connected to multiple spliceosomal proteins, such as RNA heli-
casesAQR,DDX39A, andDDX39B and peptidyl-prolyl cis-trans isom-
erase (PPIE). Notably, one core factor of the exon junction complex
(EJC) CASC3 also binds to YTHDC1. Previous reports found that
the core EJC controls RNA export, translation, and decay in mamma-
lian cells.35 EJCs multimerize with numerous SR proteins to form a
high-order structure and coordinate mRNA processing.36 Recently,
our experiments also revealed that CASC3 directly binds to circ-
NOL10, which inhibits breast cancer progression and metastasis.37

Furthermore, YTHDC1 is also a well-knownm6A “reader” that recog-
nizes m6A modification by YTH domains and mediates the down-
stream effects such as RNA decay or translation.38 Finally, a recent
study confirmed that YTHDC1 could bind to circ-RHBDD1 and pro-
mote its intracellular localization from the nucleus to the cytoplasm.39

All the above evidence suggested that YTHDC1 bridges methyl-selec-
tive RNA binding with a myriad of cellular processes via its interacting
partners. As negative controls, we randomly sample 10,000 times from
either the RBP backgrounds or the total gene background, respectively.
No sampling has an equal to or greater number of RBPs that bind with
the gold regulators under both backgrounds (p < 0.0001). A large
portion of candidates (57 out of 73) have direct binding with known
circRNA-binding proteins, which strongly suggested their essential
roles in circRNA regulation.

Except for the 17 gold regulators and 57 candidates physically con-
nected with gold regulators, there are only 16 additional predictions.
To further discover biological associations, we used the MEME suite
to search for motif similarities between these RBPs and gold regula-
tors. As shown in Table S4, we found that all of them (ADARB1,
ALKBH8, ARL6IP4, CDK11B, CELF4, CELF5, CSTF2T, GIGYF2,
MFAP1, MTO1, NOL10, RBMX2, REXO4, RNF113A, ZC3H12A,
ZFC3H1) have consensus motifs of gold circRNA regulators
(CASC3, DDX5, DDX54, IGF2BP3, MRPL44, RBM4B, U2AF2,
Figure 2. Multiple evidence supported candidate regulators

(A) circRNA-binding RBPs revealed from CLIP experiments of five stringencies are use

MFAP1 has consensus motifs of 12 gold regulators. Significant measures and binding

protein interactions (PPIs) of YTHDCC1 are enriched with 17 gold circRNA regulators. (D

DDX5 and DDX39B. (E) Knockdown experiments revealed the global impact on circR

transmembrane protein used as a negative control. (F) SRSF5, HNRNPA2B1, HNRNR

represented standard deviations from the replicated experiments. P values were cacul

402 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
FMR1, SNRPA, DDX42, TARDBP, DUSP11, ELAVL1, ALKBH5,
NOVA2, HNRNPC, RBM41) with statistical significance. For
instance, the binding motifs of MFAP1 are similar to those of 12
gold regulators (MRPL44, DDX42, DDX54, IGF2BP3, NOVA2,
U2AF2, DUSP11, FMR1, ALKBH5, ELAVL1, RBM4B, DDX5) (Fig-
ure 2B; E < 0.01). This observation raised the possibility that
MFAP1 may also bind similar targets including circRNA sequences.

In addition, we also found two weak associations with gold regulators.
We found that 14 candidate RBPs have the same transcriptional fac-
tors (TFs) as the gold circRNA regulators (Table S3; FDR < 0.05).
When compared with random sampling from two background con-
trols, it is more significant than from the total gene control (p =
0.0001) but not from the RBP control (p = 0.265). During the meta-
bolism of circRNAs, multiple RBPs coordinate the processing of tran-
scripts, therefore it requires an upstream signal such as a TF to finely
modulate and drive the production of necessary proteins.40 For
instance, analysis of the curated TF targets from TRANSFAC found
that DEAH-box helicase 8 (DHX8) shared a common transcription
factor ELK1 with several RNA helicase members such as DDX39B
and DDX5 (Figure 2D). In Drosophila, depletion of Hel25E, the ho-
molog of DDX39B, leads to nuclear accumulation of long circRNAs,
suggesting its role in circRNA transportation.28 Previous reports indi-
cated that both DDX39B and DDX5 are highly expressed and
involved in diverse cancers.41–43 ELK1 is an established master regu-
lator under tumor hypoxia.44 Although currently, little is known
about the function of DHX8, it is reasonable to propose that this
gene is also induced by ELK1 and plays a role via circRNA-mediated
mechanism in cancers. With a cutoff p <0.05, we additionally found
that 5 candidate RBPs (RBBP6, RPL17, RPS12, SRSF5, and THRAP3)
are co-expressed with gold regulators (Table S3). There are no
random samplings greater than or equal to 5 in both background con-
trols (p < 0.0001). For instance, seven gold regulator genes (EXOSC8,
FUS, HNRNPA1, NOL8, RBM25, TARDBP, THOC2) are co-ex-
pressed with the putative regulator RBBP6, therefore these RBPs
may interplay to constitute a circRNA-regulatory module. Overall,
above findings revealed that candidate regulators are more closely
connected with gold regulators, which is significant when compared
with the random samplings from negative control.

Candidate regulators grouped by NMF are supported by

knockdown experiments

To discover the experimental evidence for candidate regulators, we
comprehensively examined publicly available RNA sequencing
(RNA-seq) datasets after the depletion of the corresponding RBP.
Though these experiments were not originally designed to investigate
d to validate candidate regulators with either RBPs or total gene background. (B)

motif logos were computed by the MEME suite and TOMTOM tool. (C) The protein-

) Candidate DHX8 shared a common transcription factor ELK1 with gold regulators

NA expression. QKI (red) is a well-known circRNA regulator; SIGLEC15 (gray) is a

F, KHSRP, and PSIP1(blue) are supported by knockdown experiments. Error bars

ated from grouped t test.
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circRNA, the raw RNA-seq data can be reanalyzed to assess the effect
of RBP on the global circRNA expression. Due to the availability, only
22 out of 73 newly predicted RBPs have suitable datasets. In addition,
sialic acid binding Ig like lectin 15 (SIGLEC15), a transmembrane
protein, was randomly chosen as a negative control. We calculated
a modified circRNA index (CRI) to compare circRNA expression be-
tween control and RBP short hairpin RNA (shRNA)/siRNA knock-
down samples. It can be seen that there is no significant change in
modified CRI (mCRI) after SIGLEC15 knockout, while mCRI
decreased after siRNA interfering in QKI samples, which is a founder
circRNA regulator (Figure 2D). These results confirmed that
analyzing knockdown data can reveal whether an RBP plays a role
in circRNA processing. Among the 22 putative regulators, 13 RBPs
could be found with experimental evidence from knockdown data
by at least one circRNA-detecting tool (Table S5). Notably, it was
found that circRNAs were significantly inhibited in knockdown
samples of SRSF5, HNRNPA2B1, HNRNPF, KHSRP, and PSIP1 by
utilizing both tools, which strongly supports that these RBPs are
true circRNA regulators (Figure 2F).

Overall, among the 90 predictions from CRIT, there are 17 already
known regulators. Of the 73 newly discovered RBPs, all have at least
one biological association with gold circRNA regulators. Forty-one of
them have more than two supportive confirmations (Table S6), and
29 have more than two strong instances of supportive evidence
including physical interactions, knockdown experiments, common
motifs, and enhanced CLIP (eCLIP) binding data, which shown
that NMF-based clustering can reveal both established and novel
circRNA regulators at the same time.

Characteristics of authentic circRNA regulators

We compared the feature set between cirRNA-regulating proteins
and other RBPs to discover the key characteristics of authentic
circRNA regulators. Among the five categories of features, Zg and
Zp are considered the main features that distinguish if RBPs can
regulate circRNAs. Zg reflects if the biological function of an RBP
is close to the GO term “mRNA splicing, via spliceosome.” The
true circRNA-regulating RBPs are more likely the core splicing pro-
tein and its peripheral factors. Zp reflects alterations in an RBP in can-
cer. Our result indicated that authentic regulators usually harbor
more alterations in the vast majority of cancer datasets. There are
also minor but distinguishable differences among the other three cat-
egories of features (Table S7).

DISCUSSION
Elucidating circRNA’s role in cancers is a novel research focus and
has rapidly developed recently. An essential step for understanding
circRNA functions is to identify key regulators of circRNA in tumor-
igenesis. In the present study, we developed a computational frame-
work, CRIT, to integrate multiple-omics datasets including gene
alteration, clinical significance, known functional information, and
transcriptome data from thousands of cancer samples and to predict
a catalog of circRNA regulators across 12 cancer types. The regula-
tions among RBPs and circRNA play a crucial role in gene post-
transcriptional control and tumorigenesis.45 How do dysregulated
RBP-circRNA interactions elicit pathologic consequences and affect
patient mortality and survival? An answer lies in tracing how individ-
ual regulations converge on the multi-components circuits formed by
RBPs and non-coding RNAs (ncRNAs), and in the understanding of
the vulnerability of the cancer system to a variety of
perturbations. This highlights the importance of elucidating the
pathogenesis of cancer, thus designing better therapeutic interven-
tions through the novel lens of RBP-ncRNA circuits.46,47

Last but not least, the successful application of CRIT in cancers sug-
gested it would be interesting to exploit if the strategies developed
here may generalize to other diseases such as neurodegenerative dis-
ease. Indeed, we recently found that the expression pattern of
circRNA inversely correlated between some cancers and Alzheimer’s
disease, suggesting that they may share some common circRNA-
mediated mechanisms and pathogenesis.48 Such analysis would
require further fine-tuning of the mining algorithms and obtaining
additional mRNA/circRNA expression profiles under specific condi-
tions. Another potential technical extension of CRIT is to apply su-
pervised-learning algorithms to predict circRNA-regulating RBPs
based on known or validated regulators. These efforts will provide
new insights into the principles of circRNA regulation and aid in
the elucidation of circRNA function in the future.

MATERIALS AND METHODS
Data

Our study is based on various biological resources including TCGA
(https://www.cancer.gov/tcga), MiOncoCirc,49 GO,50 and RNAct
database.51 First, we downloaded processed gene expression, somatic
mutation, CNV, and clinical patient follow-up data from the TCGA
database of 12 cancer types, which were chosen because all these
data are simultaneously measured and have at least 50 samples for
each data type (Table S8). Then, the circRNA and mRNAs expression
data for the matching cancer types above all and the sample’s anno-
tation data are collected from the MiOncoCirc database. MiOncoCirc
is an extensive cancer-centric resource of circRNAs that was con-
structed from cancer samples (2,000+) across a plethora of disease
sites. Protein-RNA interaction data were collected from the RNAct
database.51,52 RNAct assigns an interaction score for each protein-
RNA pair with the catRAPID prediction approach, which is trained
by X-ray and nuclear magnetic resonance (NMR) structures. Accord-
ing to the original report, we threshold the RNAct binding score as 30
to obtain more convincing protein-circRNA binding sequences.51

The R biomaRt package (v.2.48.2)53 was used to download RNA
sequence data.

CRIT pipeline

Firstly, CRIT collected a set of biologically meaningful features in
circRNA modulation. Spearman’s rank correlation coefficients are
calculated between RBP coding genes and circRNAs based on expres-
sion data from the MiOncoCirc compendium. For each gene, the
mean value of absolute correlation coefficients of the top 50 gene-
circRNAs pairs, rm, is computed since it captures the main influence
Molecular Therapy: Nucleic Acids Vol. 30 December 2022 403
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of this gene on circRNA expression. Then, from the TCGA project, we
extracted an RBP-alterationmatrix from thousands of cancer samples
consisting of 19 batches of 12 cancer types (Table S8). We computed
three Z scores to capture the contributions of gene alterations Zp, clin-
ical significance Zs; and GO knowledge Zg. Additionally, a C value,
which reflects the strength of a protein interacting with circRNA,
was derived from RNAct protein-circRNA interaction data. This pro-
cedure collects 51 biological features used for clustering. Based on
these features, we applied an NMFmethod to identify candidate regu-
lator groups from 1,344 RBPs that were summarized in the previous
research.23 NMF is a well-established clustering procedure that has
been successfully applied for RBP grouping.54–56 The key issue to
decompose the feature matrix with NMF is to find a proper value
for the rank R (that is, the number of RBP groups). Then, we used co-
phenetic correlation coefficients (CPCCs) and dispersion coefficients
(DCs) (Figure S1A) to quantitatively measure the clustering stability
associated with each rank R based on a consensus matrix that is
defined as the average connectivity matrix over 10,30,50,80,100
factorization runs. We selected the local maxima 36 for CPCCs and
DCs as the potential optimized value for R, from which we calculated
the consensus matrix visualizing the robustness of our clustering (Fig-
ure S1B). The CRIT algorithm is described in detail in the supple-
mental methods.

Evidence used to validate the putative regulators

We used various gene-gene associations from the Harmonizome
database to confirm our predicted candidate regulator groups (i.e.,
whether the putative candidate regulator has biological associations
with the known gold circRNA regulators)57 (Figures 1E and 1F).
We used the protein-protein physical interactions data from
Pathway Commons, gene co-expression data from the Molecular Sig-
natures Database, and curated TF target data from TRANSFAC for
assessment.

For each candidate regulator in the predicted group, we calculated
the counts of physical interaction with the gold standard regulators
from previous research, then we applied Fisher’s exact test to see if
the known circRNA regulators are significantly enriched in their in-
teracting partners. Multiple statistical tests were controlled by the
FDR.58 For the negative control, we perform random sampling
10,000 times from either the RBP background or the total gene
background with the p = counts

10;000, whereas counts is the number of
counts more than or equal to the number of candidate regulators.
Similar assessments were applied to calculate the co-expression as-
sociation and shared TFs among the putative regulators and gold
standard regulators.

Analyzing the eCLIP datasets

To investigate the consistency between our pipeline and eCLIP exper-
iments, we collected two RBP lists that were supported by eCLIP exper-
iments. First, the mutual interactions among RBPs and circRNAs were
extracted from ENCORI database across 2 species (human andmouse)
(http://starbase.sysu.edu.cn/).32 Each interaction has a stringency value
(R1, low;R2, medium;R3, high;R5, strict), where the values indi-
404 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
cated the supportedCLIP/PARE (parallel analysis of RNA ends) exper-
imental evidence.We obtained RBP lists ranging from 132 to 27 whose
stringency value was from low to strict. We also downloaded human
RBPs of the CLIPdb module in the POSTAR3 database,30 which
have annotations supported by CLIP-seq data. Then, we manually
filtered a list of 112 RBPs, which bound on circRNA junction regions.
To measure the agreement between the candidate regulators and the
eCLIP experiments, we performed Fisher’s exact test between the
candidate regulators and the two RBP lists described above. Back-
ground genes have been used either as the list of 1,344 RBPs from
the review23 or the 35,371 genes from the R package “org.Hs.eg.db,”59

respectively.
Binding motif analysis for candidate regulators

De novo motif finding was performed using circRNA sequences
collected from the RNAct database. Then, we applied theMEME suite
to discover binding motifs of RBP from these sequences.60 The
TOMTOM tool was used to compare the similarity of motifs of reg-
ulators among putative regulators and gold standard regulators (Fig-
ure 1F). It calculates E values based on the likelihood of seeing the
observed amount of similarity between two motifs, corrected for mul-
tiple comparisons by using a position weight matrix representation of
the motif.61 Background sequences were randomly selected from the
genome, which matched the GC-content distribution and length of
the input sequences. The outputs of TOMTOM also include motif
logos and a significance index. Here, we used E <0.01 as the signifi-
cance threshold since the previous report indicated its effectiveness
in finding true motif similarity.61
Validation of regulators by RNA-seq data after shRNA/siRNA

knockdown

We comprehensively searched the GEO database (https://www.ncbi.
nlm.nih.gov/gds/) and ENCODE database (https://www.encode
project.org/) for each of the 73 predicted RBPs to see if there are pub-
lic available shRNA or siRNA-RBP-seq data. Twenty-seven datasets
are used in this project (IDs are listed in Table S5). Since the previous
survey indicated that no single circRNA-detecting tool can outper-
form other methods, we reanalyzed the raw data to predict circRNA
by both CIRI2 and find_circ algorithms.62,63 We calculated an mCRI
to compare circRNA expression between control and regulator
knockdown samples, thus assessing the effect of candidate regulators
on the global expression of circRNAs. CRI was previously defined as
the number of circRNAs with higher than its mean abundance in the
given sample.64 However, under the same conditions, different
sequencing depths have a great impact on the counts of identified
circRNAs. Therefore, we eliminated this effect by normalizing the
CRI, i.e., mCRI = ym

data size of each sample. After calculating the mCRI

mean and variance of the “treatment” and “control” groups, respec-
tively, a t test was performed on the two groups. An RBP candidate
was regarded as a validated regulator if the mCRI was significantly
changed when utilizing either of the two circRNA-detecting tools. It
was highly reliable that the candidate RBP regulated circRNA if the
mCRI was significant when utilizing both tools.

http://starbase.sysu.edu.cn/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.encodeproject.org/
https://www.encodeproject.org/
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Comparison circRNA-regulating proteins with others

To investigate the main differences between cirRNAs-regulating
RBPs and other proteins, we used the 90 predicted RBPs and the other
916 RBPs as comparing groups and performed t tests in the 51 fea-
tures, respectively.
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