5,434 research outputs found

    Temporal Trends and Variability of Daily Maximum and Minimum, Extreme Temperature Events, and Growing Season Length Over the Eastern and Central Tibetan Plateau During 1961–2003

    Get PDF
    Daily and monthly maximum and minimum surface air temperatures at 66 weather stations over the eastern and central Tibetan Plateau with elevations above 2000 m were analyzed for temporal trends and spatial variation patterns during the period 1961–2003. Statistically significant warming trends were identified in various measures of the temperature regime, such as temperatures of extreme events and diurnal temperature range. The warming trends in winter nighttime temperatures were among the highest when compared with other regions. We also confirmed the asymmetric pattern of greater warming trends in minimum or nighttime temperatures as compared to the daytime temperatures. The warming in regional climate caused the number of frost days to decrease significantly and the number of warm days to increase. The length of the growing season increased by approximately 17 days during the 43-year study period. Most of the record-setting months for cold events were found in the earlier part of the study period, while that of the warm events occurred mostly in the later half, especially since the 1990s. The changes in the temperature regime in this region may have brought regional-specific impacts on the ecosystems. It was found that grain production in Qinghai Province, located in the area of prominent warming trends, exhibited strong correlations with the temperatures, although such relationships were obscured by the influence of precipitation in this arid/semiarid environment in juniper tree ring records. In western Sichuan Province under a more humid environment, the tree growth (spruces) was more closely related to the changing temperatures

    Compressive Sequential Learning for Action Similarity Labeling

    Get PDF
    Human action recognition in videos has been extensively studied in recent years due to its wide range of applications. Instead of classifying video sequences into a number of action categories, in this paper, we focus on a particular problem of action similarity labeling (ASLAN), which aims at verifying whether a pair of videos contain the same type of action or not. To address this challenge, a novel approach called compressive sequential learning (CSL) is proposed by leveraging the compressive sensing theory and sequential learning. We first project data points to a low-dimensional space by effectively exploring an important property in compressive sensing: the restricted isometry property. In particular, a very sparse measurement matrix is adopted to reduce the dimensionality efficiently. We then learn an ensemble classifier for measuring similarities between pairwise videos by iteratively minimizing its empirical risk with the AdaBoost strategy on the training set. Unlike conventional AdaBoost, the weak learner for each iteration is not explicitly defined and its parameters are learned through greedy optimization. Furthermore, an alternative of CSL named compressive sequential encoding is developed as an encoding technique and followed by a linear classifier to address the similarity-labeling problem. Our method has been systematically evaluated on four action data sets: ASLAN, KTH, HMDB51, and Hollywood2, and the results show the effectiveness and superiority of our method for ASLAN

    Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of DNNs

    Get PDF
    Conditioning analysis uncovers the landscape of an optimization objective by exploring the spectrum of its curvature matrix. This has been well explored theoretically for linear models. We extend this analysis to deep neural networks (DNNs) in order to investigate their learning dynamics. To this end, we propose layer-wise conditioning analysis, which explores the optimization landscape with respect to each layer independently. Such an analysis is theoretically supported under mild assumptions that approximately hold in practice. Based on our analysis, we show that batch normalization (BN) can stabilize the training, but sometimes result in the false impression of a local minimum, which has detrimental effects on the learning. Besides, we experimentally observe that BN can improve the layer-wise conditioning of the optimization problem. Finally, we find that the last linear layer of a very deep residual network displays ill-conditioned behavior. We solve this problem by only adding one BN layer before the last linear layer, which achieves improved performance over the original and pre-activation residual networks.Comment: Accepted to ECCV 2020. The code is available at: https://github.com/huangleiBuaa/LayerwiseC

    Graph Distillation for Action Detection with Privileged Modalities

    Full text link
    We propose a technique that tackles action detection in multimodal videos under a realistic and challenging condition in which only limited training data and partially observed modalities are available. Common methods in transfer learning do not take advantage of the extra modalities potentially available in the source domain. On the other hand, previous work on multimodal learning only focuses on a single domain or task and does not handle the modality discrepancy between training and testing. In this work, we propose a method termed graph distillation that incorporates rich privileged information from a large-scale multimodal dataset in the source domain, and improves the learning in the target domain where training data and modalities are scarce. We evaluate our approach on action classification and detection tasks in multimodal videos, and show that our model outperforms the state-of-the-art by a large margin on the NTU RGB+D and PKU-MMD benchmarks. The code is released at http://alan.vision/eccv18_graph/.Comment: ECCV 201

    Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings

    Full text link
    Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in waveguide is generally considered to be caused by shape birefringence, like curvature, morphology of waveguide cross section and scattering. Here, we reveal a hidden polarization conversion mechanism in X-cut lithium niobate microrings, that is the conversion can be implemented by birefringence of waveguides, which will also introduce an unavoidable avoided-mode crossing. In the experiment, we find that this mode crossing results in severe suppression of one sideband in local nondegenerate four-wave mixing and disrupts the cascaded four-wave mixing on this side. Simultaneously, we proposed, for the first time to our best knowledge, one two-dimensional method to simulate the eigenmodes (TE and TM) in X-cut microrings, which avoids the obstacle from large computational effort in three-dimensional anisotropic microrings simulation, and the mode crossing point. This work will provide an entirely novel approach to the design of polarization converters and simulation for monolithic photonics integrated circuits, and may be helpful to the studies of missed temporal dissipative soliton formation in X-cut lithium niobate rings

    Growth pattern of Fortunian scalidophoran sclerites

    Get PDF
    Fortunian scalidophoran worms have shown high diversity, with 7 genera and species and 10 indeterminate forms. Current studies have mainly focused on morphology as well as early evolution, and studies on ontogeny have not been carried out due to the limited number of specimens. Here, we report new material of an Orsten-type preserved Indeterminate Form 3 from the Zhangjiagou section. Collected specimens of Indeterminate Form 3 with different annulus widths indicate the presence of several ontogenetic stages. We found newly formed sclerites on the annulus of Indeterminate Form 3 at different ontogenetic stages, suggesting that the sclerites of Indeterminate Form 3 become more numerous in addition to increasing in size during growth. The size of the large sclerites may also increase as the worms grow, however, their number may not change

    An improved plating assay for determination of phage titer

    Get PDF
    Phage is a virus that is parasitic on bacteria. It is very important to determine the titer of test sample in the study of phage. In this study, an improved plating assay was developed for detection of the number of recombinant phage Cap-T7 present in a test solution at a certain dilution point by counting the plaque forming units. The data demonstrated that the improved plating assay is fast, useful, and convenient for the determination of the phage titer in a sample.Keywords: Phage Cap-T7, detection method, plaque forming unit
    • …
    corecore