23,092 research outputs found

    Feasibility study of thin film tunnel cathodes

    Get PDF
    Thin film tunnel cathodes evaluated for use in ultrahigh vacuum gauge

    Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows

    Get PDF
    A shear-improved Smagorinsky model is introduced based on recent results concerning shear effects in wall-bounded turbulence by Toschi et al. (2000). The Smagorinsky eddy-viscosity is modified subtracting the magnitude of the mean shear from the magnitude of the instantaneous resolved strain-rate tensor. This subgrid-scale model is tested in large-eddy simulations of plane-channel flows at two different Reynolds numbers. First comparisons with the dynamic Smagorinsky model and direct numerical simulations, including mean velocity, turbulent kinetic energy and Reynolds stress profiles, are shown to be extremely satisfactory. The proposed model, in addition of being physically sound, has a low computational cost and possesses a high potentiality of generalization to more complex non-homogeneous turbulent flows.Comment: 10 pages, 6 figures, added some reference

    Diffraction microstrain in nanocrystalline solids under load - heterogeneous medium approach

    Full text link
    This is an account of the computation of X-ray microstrain in a polycrystal with anisotropic elasticity under uniaxial external load. The results have been published in the article "Microstrain in nanocrystalline solids under load by virtual diffraction", at Europhysics Letters 89, 66002 (2010). The present information was submitted to Europhysics Letters as part of the manuscript package, and was available to the reviewers who recommended the paper for publication.Comment: Supporting online material for J. Markmann, D. Bachurin, L.-H. Shao, P. Gumbsch, J. Weissm\"uller, Microstrain in nanocrystalline solids under load by virtual diffraction, Europhys. Lett. 89, 66002 (2010

    Decay of scalar variance in isotropic turbulence in a bounded domain

    Full text link
    The decay of scalar variance in isotropic turbulence in a bounded domain is investigated. Extending the study of Touil, Bertoglio and Shao (2002; Journal of Turbulence, 03, 49) to the case of a passive scalar, the effect of the finite size of the domain on the lengthscales of turbulent eddies and scalar structures is studied by truncating the infrared range of the wavenumber spectra. Analytical arguments based on a simple model for the spectral distributions show that the decay exponent for the variance of scalar fluctuations is proportional to the ratio of the Kolmogorov constant to the Corrsin-Obukhov constant. This result is verified by closure calculations in which the Corrsin-Obukhov constant is artificially varied. Large-eddy simulations provide support to the results and give an estimation of the value of the decay exponent and of the scalar to velocity time scale ratio

    An Improved NSGA-II and its Application for Reconfigurable Pixel Antenna Design

    Get PDF
    Based on the elitist non-dominated sorting genetic algorithm (NSGA-II) for multi-objective optimization problems, an improved scheme with self-adaptive crossover and mutation operators is proposed to obtain good optimization performance in this paper. The performance of the improved NSGA-II is demonstrated with a set of test functions and metrics taken from the standard literature on multi-objective optimization. Combined with the HFSS solver, one pixel antenna with reconfigurable radiation patterns, which can steer its beam into six different directions (θDOA = ± 15°, ± 30°, ± 50°) with a 5 % overlapping impedance bandwidth (S11 < − 10 dB) and a realized gain over 6 dB, is designed by the proposed self-adaptive NSGA-II

    Spectral imbalance and the normalized dissipation rate of turbulence

    Full text link
    The normalized turbulent dissipation rate CϵC_\epsilon is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of CϵC_\epsilon is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of CϵC_\epsilon becomes independent of the Reynolds number, but is still not unique. This difference can be explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for statistically nonstationary turbulence. Phenomenological analysis yields simple analytical models that satisfactorily reproduce the numerical results. These simple spectral models also reproduce and explain the increase of CϵC_\epsilon at low Reynolds number that is observed in the simulations

    Perturbation Theory for Plasmonic Modulation and Sensing

    Full text link
    We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index, and metallic plasma frequency modulation in metal- dielectric nanostructures. As a numerical demonstration, we verify the theory's accu- racy against direct calculations, for a system of plasmonic rods in air where the metal is defined by a two-pole fit of silver's dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation, and future active metamaterial applications.Comment: 17 pages, 6 figure

    On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    Get PDF
    A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area
    corecore