8 research outputs found

    Multi-Scale Object Detection Model for Autonomous Ship Navigation in Maritime Environment

    Get PDF
    Accurate detection of sea-surface objects is vital for the safe navigation of autonomous ships. With the continuous development of artificial intelligence, electro-optical (EO) sensors such as video cameras are used to supplement marine radar to improve the detection of objects that produce weak radar signals and small sizes. In this study, we propose an enhanced convolutional neural network (CNN) named VarifocalNet * that improves object detection in harsh maritime environments. Specifically, the feature representation and learning ability of the VarifocalNet model are improved by using a deformable convolution module, redesigning the loss function, introducing a soft non-maximum suppression algorithm, and incorporating multi-scale prediction methods. These strategies improve the accuracy and reliability of our CNN-based detection results under complex sea conditions, such as in turbulent waves, sea fog, and water reflection. Experimental results under different maritime conditions show that our method significantly outperforms similar methods (such as SSD, YOLOv3, RetinaNet, Faster R-CNN, Cascade R-CNN) in terms of the detection accuracy and robustness for small objects. The maritime obstacle detection results were obtained under harsh imaging conditions to demonstrate the performance of our network model

    A High-Precision Detection Model of Small Objects in Maritime UAV Perspective Based on Improved YOLOv5

    No full text
    Object detection by shipborne unmanned aerial vehicles (UAVs) equipped with electro-optical (EO) sensors plays an important role in maritime rescue and ocean monitoring. However, high-precision and low-latency maritime environment small-object-detection algorithms remain a major challenge. To address this problem, this paper proposes the YOLO-BEV (“you only look once”–“bird’s-eye view”) model. First, we constructed a bidirectional feature fusion module—that is, PAN+ (Path Aggregation Network+)—adding an extremely-small-object-prediction head to deal with the large-scale variance of targets at different heights. Second, we propose a C2fSESA (Squeeze-and-Excitation Spatial Attention Based on C2f) module based on the attention mechanism to obtain richer feature information by aggregating features of different depth layers. Finally, we describe a lightweight spatial pyramid pooling structure called RGSPP (Random and Group Convolution Spatial Pyramid Pooling), which uses group convolution and random channel rearrangement to reduce the model’s computational overhead and improve its generalization ability. The article compares the YOLO-BEV model with other object-detection algorithms on the publicly available MOBDrone dataset. The research results show that the mAP0.5 value of YOLO-BEV reached 97.1%, which is 4.3% higher than that of YOLOv5, and the average precision for small objects increased by 22.2%. Additionally, the YOLO-BEV model maintained a detection speed of 48 frames per second (FPS). Consequently, the proposed method effectively balances the accuracy and efficiency of object-detection in shipborne UAV scenarios, outperforming other related techniques in shipboard UAV maritime object detection

    Multi-Scale Object Detection Model for Autonomous Ship Navigation in Maritime Environment

    No full text
    Accurate detection of sea-surface objects is vital for the safe navigation of autonomous ships. With the continuous development of artificial intelligence, electro-optical (EO) sensors such as video cameras are used to supplement marine radar to improve the detection of objects that produce weak radar signals and small sizes. In this study, we propose an enhanced convolutional neural network (CNN) named VarifocalNet * that improves object detection in harsh maritime environments. Specifically, the feature representation and learning ability of the VarifocalNet model are improved by using a deformable convolution module, redesigning the loss function, introducing a soft non-maximum suppression algorithm, and incorporating multi-scale prediction methods. These strategies improve the accuracy and reliability of our CNN-based detection results under complex sea conditions, such as in turbulent waves, sea fog, and water reflection. Experimental results under different maritime conditions show that our method significantly outperforms similar methods (such as SSD, YOLOv3, RetinaNet, Faster R-CNN, Cascade R-CNN) in terms of the detection accuracy and robustness for small objects. The maritime obstacle detection results were obtained under harsh imaging conditions to demonstrate the performance of our network model

    Multi-Scale Object Detection Model for Autonomous Ship Navigation in Maritime Environment

    No full text
    Accurate detection of sea-surface objects is vital for the safe navigation of autonomous ships. With the continuous development of artificial intelligence, electro-optical (EO) sensors such as video cameras are used to supplement marine radar to improve the detection of objects that produce weak radar signals and small sizes. In this study, we propose an enhanced convolutional neural network (CNN) named VarifocalNet * that improves object detection in harsh maritime environments. Specifically, the feature representation and learning ability of the VarifocalNet model are improved by using a deformable convolution module, redesigning the loss function, introducing a soft non-maximum suppression algorithm, and incorporating multi-scale prediction methods. These strategies improve the accuracy and reliability of our CNN-based detection results under complex sea conditions, such as in turbulent waves, sea fog, and water reflection. Experimental results under different maritime conditions show that our method significantly outperforms similar methods (such as SSD, YOLOv3, RetinaNet, Faster R-CNN, Cascade R-CNN) in terms of the detection accuracy and robustness for small objects. The maritime obstacle detection results were obtained under harsh imaging conditions to demonstrate the performance of our network model

    Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics

    No full text
    A very broad distribution of microstructural length scales spanning few nm- to the ÎĽm-scale has proven effective to achieve exceptional materials properties. Here, we fabricate a Cu/Nb two-phase composite made of a hierarchically layered structure by modifying the conventional accumulative roll bonding (ARB) technique, where fresh Nb sheets are inserted and bonded during a repeated stacking and rolling process. This barcode-like multilayer with a designed hierarchical length scale distribution possesses densely distributed phase boundaries and rich interfacial structures. The composite demonstrates similar superconductivity characteristics as pure Nb, but is 3 Ă— stronger, has theoretically better oxidation resistance, and retains considerable ductility. Under the helium irradiation environment, the unique interfacial structures featuring chemical intermixing zones (3-dimensional) are more immune to the formation of large helium clusters than atomically sharp interfaces (2-dimensional), screening them from radiation damage and improving their long-term mechanical integrity. This work signifies an effective strategy of constructing hierarchical laminates to achieve high-performance materials, which holds promise in fusion and fission energy applications.DOE Office of Nuclear Energy (Grant DE-NE0008827
    corecore