1,464 research outputs found

    An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates

    Full text link
    The CO_{2} electro-reduction reaction (CORR) is a promising avenue to convert greenhouse gases into high-value fuels and chemicals, in addition to being an attractive method for storing intermittent renewable energy. Although polycrystalline Cu surfaces have long known to be unique in their capabilities of catalyzing the conversion of CO_{2} to higher-order C1 and C2 fuels, such as hydrocarbons (CH_{4}, C_{2}H_{4} etc.) and alcohols (CH_{3}OH, C_{2}H_{5}OH), product selectivity remains a challenge. In this study, we select three metal catalysts (Pt, Au, Cu) and apply in situ surface enhanced infrared absorption spectroscopy (SEIRAS) and ambient-pressure X-ray photoelectron spectroscopy (APXPS), coupled to density-functional theory (DFT) calculations, to get insight into the reaction pathway for the CORR. We present a comprehensive reaction mechanism for the CORR, and show that the preferential reaction pathway can be rationalized in terms of metal-carbon (M-C) and metal-oxygen (M-O) affinity. We show that the final products are determined by the configuration of the initial intermediates, C-bound and O-bound, which can be obtained from CO_{2} and (H)CO_{3}, respectively. C1 hydrocarbons are produced via OCH_{3, ad} intermediates obtained from O-bound CO_{3, ad} and require a catalyst with relatively high affinity for O-bound intermediates. Additionally, C2 hydrocarbon formation is suggested to result from the C-C coupling between C-bound CO_{ad} and (H)CO_{ad}, which requires an optimal affinity for the C-bound species, so that (H)CO_{ad} can be further reduced without poisoning the catalyst surface. Our findings pave the way towards a design strategy for CORR catalysts with improved selectivity, based on this experimental/theoretical reaction mechanisms that have been identified

    Coe1 in Beta vulgaris L. Has a Tnp2-Domain DNA Transposase Gene within Putative LTRs and Other Retroelement-Like Features

    Get PDF
    We describe discovery in Beta vulgaris L. of Coe1, a DNA transposase gene within putative long terminal repeats (LTRs), and other retrotransposon-like features including both a retroviral-like hypothetical gene and an Rvt2-domain reverse transcriptase pseudogene. The central DNA transposase gene encodes, in eight exons, a predicted 160-KDa protein producing BLAST alignments with En/Spm-type transposons. Except for a stop signal, another ORF encodes a Ty1-copia-like reverse transcriptase with amino acid sequence domain YVDDIIL. Outside apparent LTRs, an 8-mer nucleotide sequence motif CACTATAA, near or within inverted repeat sequences, is hypothetical extreme termini. A genome scan of Arabidopsis thaliana found another example of a Tnp2-domain transposase gene within an apparent LTR-retrotransposon on chromosome 4

    Genes Encoding Callose Synthase and Phytochrome A Are Adjacent to a MAP3Kα-Like Gene in Beta vulgaris US H20

    Get PDF
    MAP3Kα, a gene that encodes a key conserved protein kinase, is responsible for initiating a rapid cascade of cellular events leading to localized cell death. Hypersensitive response, as it is termed, enables genetically resistant plants to limit microbial invasion under the right environmental conditions. Since knowledge of close physically linked genes is important for genome analysis and possibly for improving disease resistance, systematic DNA sequence analysis, gene annotation, and protein BLASTs were performed to identify and characterize genes in close physical proximity to a MAP3Kα-like gene in Beta vulgaris L. US H20. On the same 125 Kb BAC, callose synthase (BvCS) and phytochrome A (PhyA) genes were within 50 Kb of MAP3Kα. The close physical linkage of these genes may result from selection for coordinated responses to disease pressure. Bert, a new chromodomain-carrying gypsy-like LTR retrotransposon, resides within an intron of the BvCS gene, where it is transcribed from the opposing strand

    ‘Ca. Liberibacter asiaticus’ Proteins Orthologous with pSymA-Encoded Proteins of Sinorhizobium meliloti: Hypothetical Roles in Plant Host Interaction

    Get PDF
    Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential ‘accessory’ genes for nitrogen fixation (nif), nodulation and host specificity (nod). A related bacterium, psyllid-vectored ‘Ca. Liberibacter asiaticus,’ is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the ‘Ca. Liberibacter asiaticus’ genome. Only two ‘Ca. Liberibacter asiaticus’ proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na+/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea) and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and ‘Ca. Liberibacter asiaticus’ orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤E-10) with ‘Ca. Liberibacter asiaticus’ proteins, often present as multiple orthologs of single ‘Ca. Liberibacter asiaticus’ proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational analysis and is consistent with the hypothesis that these proteins may be of particular importance in host/microbe interaction and their duplication likely facilitates their ongoing evolution

    Assessing correlations of perovskite catalytic performance with electronic structure descriptors

    Full text link
    Electronic structure descriptors are computationally efficient quantities used to construct qualitative correlations for a variety of properties. In particular, the oxygen p-band center has been used to guide material discovery and fundamental understanding of an array of perovskite compounds for use in catalyzing the oxygen reduction and evolution reactions. However, an assessment of the effectiveness of the oxygen p-band center at predicting key measures of perovskite catalytic activity has not been made, and would be highly beneficial to guide future predictions and codify best practices. Here, we have used Density Functional Theory at the PBE, PBEsol, PBE+U, SCAN and HSE06 levels to assess the correlations of numerous measures of catalytic performance for a series of technologically relevant perovskite oxides, using the bulk oxygen p-band center as an electronic structure descriptor. We have analyzed correlations of the calculated oxygen p-band center for all considered functionals with the experimentally measured X-ray emission spectroscopy oxygen p-band center and multiple measures of catalytic activity, including high temperature oxygen reduction surface exchange rates, aqueous oxygen evolution current densities, and binding energies of oxygen evolution intermediate species. Our results show that the best correlations for all measures of catalytic activity considered here are made with PBE-level calculations, with strong observed linear correlations with the bulk oxygen p-band center (R2 = 0.81-0.87). This study shows that strong linear correlations between numerous important measures of catalytic activity and the oxygen p-band bulk descriptor can be obtained under a consistent computational framework, and these correlations can serve as a guide for future experiments and simulations for development of perovskite and related oxide catalysts

    Resistance to Helium Bubble Formation in Amorphous SiOC/Crystalline Fe Nanocomposite

    Get PDF
    The management of radiation defects and insoluble He atoms represent key challenges for structural materials in existing fission reactors and advanced reactor systems. To examine how crystalline/amorphous interface, together with the amorphous constituents affects radiation tolerance and He management, we studied helium bubble formation in helium ion implanted amorphous silicon oxycarbide (SiOC) and crystalline Fe composites by transmission electron microscopy (TEM). The SiOC/Fe composites were grown via magnetron sputtering with controlled length scale on a surface oxidized Si (100) substrate. These composites were subjected to 50 keV He+ implantation with ion doses chosen to produce a 5 at% peak He concentration. TEM characterization shows no sign of helium bubbles in SiOC layers nor an indication of secondary phase formation after irradiation. Compared to pure Fe films, helium bubble density in Fe layers of SiOC/Fe composite is less and it decreases as the amorphous/crystalline SiOC/Fe interface density increases. Our findings suggest that the crystalline/amorphous interface can help to mitigate helium defect generated during implantation, and therefore enhance the resistance to helium bubble formation

    Coenzyme Q10 dose-escalation study in hemodialysis patients: safety, tolerability, and effect on oxidative stress.

    Get PDF
    BackgroundCoenzyme Q10 (CoQ10) supplementation improves mitochondrial coupling of respiration to oxidative phosphorylation, decreases superoxide production in endothelial cells, and may improve functional cardiac capacity in patients with congestive heart failure. There are no studies evaluating the safety, tolerability and efficacy of varying doses of CoQ10 in chronic hemodialysis patients, a population subject to increased oxidative stress.MethodsWe performed a dose escalation study to test the hypothesis that CoQ10 therapy is safe, well-tolerated, and improves biomarkers of oxidative stress in patients receiving hemodialysis therapy. Plasma concentrations of F2-isoprostanes and isofurans were measured to assess systemic oxidative stress and plasma CoQ10 concentrations were measured to determine dose, concentration and response relationships.ResultsFifteen of the 20 subjects completed the entire dose escalation sequence. Mean CoQ10 levels increased in a linear fashion from 704 ± 286 ng/mL at baseline to 4033 ± 1637 ng/mL, and plasma isofuran concentrations decreased from 141 ± 67.5 pg/mL at baseline to 72.2 ± 37.5 pg/mL at the completion of the study (P = 0.003 vs. baseline and P < 0.001 for the effect of dose escalation on isofurans). Plasma F2-isoprostane concentrations did not change during the study.ConclusionsCoQ10 supplementation at doses as high as 1800 mg per day was safe in all subjects and well-tolerated in most. Short-term daily CoQ10 supplementation decreased plasma isofuran concentrations in a dose dependent manner. CoQ10 supplementation may improve mitochondrial function and decrease oxidative stress in patients receiving hemodialysis.Trial registrationThis clinical trial was registered on clinicaltrials.gov [NCT00908297] on May 21, 2009
    corecore