21,909 research outputs found
Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons
We compute the contribution of order to the cross
section of a top-antitop pair in association with at least one heavy Standard
Model boson -- , , and Higgs -- by including all effects of QCD, QED,
and weak origin and by working in the automated MadGraph5_aMC@NLO framework.
This next-to-leading order contribution is then combined with that of order
, and with the two dominant lowest-order ones,
and , to obtain phenomenological results
relevant to a 8, 13, and 100~TeV collider.Comment: 27 pages, 8 figure
Weak corrections to Higgs hadroproduction in association with a top-quark pair
We present the calculation of the next-to-leading contribution of order
to the production of a Standard Model Higgs boson in
association with a top-quark pair at hadron colliders. All effects of weak and
QCD origin are included, whereas those of QED origin are ignored. We work in
the MadGraph5_aMC@NLO framework, and discuss sample phenomenological
applications at a 8, 13, and 100 TeV collider, including the effects of
the dominant next-to-leading QCD corrections of order .Comment: 29 pages, 38 figure
The automation of next-to-leading order electroweak calculations
We present the key features relevant to the automated computation of all the
leading- and next-to-leading order contributions to short-distance cross
sections in a mixed-coupling expansion, with special emphasis on the first
subleading NLO term in the QCD+EW scenario, commonly referred to as NLO EW
corrections. We discuss, in particular, the FKS subtraction in the context of a
mixed-coupling expansion; the extension of the FKS subtraction to processes
that include final-state tagged particles, defined by means of fragmentation
functions; and some properties of the complex mass scheme. We combine the
present paper with the release of a new version of MadGraph5_aMC@NLO, capable
of dealing with mixed-coupling expansions. We use the code to obtain
illustrative inclusive and differential results for the 13-TeV LHC.Comment: 121 pages, 16 figure
On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays
A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area
A VLSI pipeline design of a fast prime factor DFT on a finite field
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented
A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms
A parallel architecture for computation of the linear convolution of two sequences of arbitrary lengths using the Fermat number transform (FNT) is described. In particular a pipeline structure is designed to compute a 128-point FNT. In this FNT, only additions and bit rotations are required. A standard barrel shifter circuit is modified so that it performs the required bit rotation operation. The overlap-save method is generalized for the FNT to compute a linear convolution of arbitrary length. A parallel architecture is developed to realize this type of overlap-save method using one FNT and several inverse FNTs of 128 points. The generalized overlap save method alleviates the usual dynamic range limitation in FNTs of long transform lengths. Its architecture is regular, simple, and expandable, and therefore naturally suitable for VLSI implementation
A single chip VLSI Reed-Solomon decoder
A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip
Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)
Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow
for studies of heavy-flavour hadroproduction with unprecedented precision at
backward rapidities - far negative Feyman-x - using conventional detection
techniques. At the nominal LHC energies, quarkonia can be studies in detail in
p+p, p+d and p+A collisions at sqrt(s_NN) ~ 115 GeV as well as in Pb+p and Pb+A
collisions at sqrt(s_NN) ~ 72 GeV with luminosities roughly equivalent to that
of the collider mode, i.e. up to 20 fb-1 yr-1 in p+p and p+d collisions, up to
0.6 fb-1 yr-1 in p+A collisions and up to 10 nb-1 yr-1 in Pb+A collisions. In
this paper, we assess the feasibility of such studies by performing fast
simulations using the performance of a LHCb-like detector.Comment: 12 pages, 14 figure
LATOR Covariance Analysis
We present results from a covariance study for the proposed Laser Astrometric
Test of Relativity (LATOR) mission. This mission would send two
laser-transmitter spacecraft behind the Sun and measure the relative
gravitational light bending of their signals using a hundred-meter-baseline
optical interferometer to be constructed on the International Space Station. We
assume that each spacecraft is equipped with a drag-free system and assume
approximately one year of data. We conclude that the observations allow a
simultaneous determination of the orbit parameters of the spacecraft and of the
Parametrized Post-Newtonian (PPN) parameter with an uncertainty of
. We also find a determination of the
solar quadrupole moment, , as well as the first measurement of the
second-order post-PPN parameter to an accuracy of about .Comment: 9 pages, 3 figures. first revision: minor changes to results. Second
revision: additional discussion of orbit modelling and LATOR drag-free system
requirement feasibility. Added references to tables I and V (which list PPN
parameter uncertainties), removed word from sentence in Section III. 3rd
revision: removed 2 incorrect text fragments (referring to impact parameter
as distance of closest approach) and reference to upcoming publication of
ref. 2, removed spurious gamma from eq. 1 - Last error is still in cqg
published versio
- …