14 research outputs found
Predicting coordination variability of selected lower extremity couplings during a cutting movement:an investigation of deep neural networks with the LSTM structure
There are still few portable methods for monitoring lower limb joint coordination during the cutting movements (CM). This study aims to obtain the relevant motion biomechanical parameters of the lower limb joints at 90°, 135°, and 180° CM by collecting IMU data of the human lower limbs, and utilizing the Long Short-Term Memory (LSTM) deep neural-network framework to predict the coordination variability of selected lower extremity couplings at the three CM directions. There was a significant (p < 0.001) difference between the three couplings during the swing, especially at 90° vs the other directions. At 135° and 180°, t13-he coordination variability of couplings was significantly greater than at 90° (p < 0.001). It is important to note that the coordination variability of Hip rotation/Knee flexion-extension was significantly higher at 90° than at 180° (p < 0.001). By the LSTM, the CM coordination variability for 90° (CMC = 0.99063, RMSE = 0.02358), 135° (CMC = 0.99018, RMSE = 0.02465) and 180° (CMC = 0.99485, RMSE = 0.01771) were accurately predicted. The predictive model could be used as a reliable tool for predicting the coordination variability of different CM directions in patients or athletes and real-world open scenarios using inertial sensors
PVTv2: Improved Baselines with Pyramid Vision Transformer
Transformer recently has shown encouraging progresses in computer vision. In
this work, we present new baselines by improving the original Pyramid Vision
Transformer (abbreviated as PVTv1) by adding three designs, including (1)
overlapping patch embedding, (2) convolutional feed-forward networks, and (3)
linear complexity attention layers.
With these modifications, our PVTv2 significantly improves PVTv1 on three
tasks e.g., classification, detection, and segmentation. Moreover, PVTv2
achieves comparable or better performances than recent works such as Swin
Transformer. We hope this work will facilitate state-of-the-art Transformer
researches in computer vision. Code is available at
https://github.com/whai362/PVT .Comment: Technical Repor
The effects of non-Newtonian fluid material midsole footwear on tibial shock acceleration and attenuation
Introduction: Given the possibility of higher ground temperatures in the future, the pursuit of a cushioning material that can effectively reduce sports injuries during exercise, particularly one that retains its properties at elevated temperatures, has emerged as a serious concern.Methods: A total of 18 man recreational runners were recruited from Ningbo University and local clubs for participation in this study. Frequency analysis was employed to investigate whether there is a distinction between non-Newtonian (NN) shoes and ethylene vinyl acetate (EVA) shoes.Results: The outcomes indicated that the utilization of NN shoes furnished participants with superior cushioning when engaging in a 90° cutting maneuver subsequent to an outdoor exercise, as opposed to the EVA material. Specifically, participants wearing NN shoes exhibited significantly lower peak resultant acceleration (p = 0.022) and power spectral density (p = 0.010) values at the distal tibia compared to those wearing EVA shoes. Moreover, shock attenuation was significantly greater in subjects wearing NN shoes (p = 0.023) in comparison to EVA shoes. Performing 90° cutting maneuver in NN shoes resulted in significantly lower peak ground reaction force (p = 0.010), vertical average loading rate (p < 0.010), and vertical instantaneous loading rate (p = 0.030) values compared to performing the same maneuvers in EVA shoes.Conclusion: The study found that the PRA and PSD of the distal tibia in NN footwear were significantly lower compared to EVA footwear. Additionally, participants exhibited more positive SA while using NN footwear compared to EVA. Furthermore, during the 90° CM, participants wearing NN shoes showed lower PGRF, VAIL, and VILR compared to those in EVA shoes. All these promising results support the capability of NN footwear to offer additional reductions in potential injury risk to runners, especially in high-temperature conditions
Scene Text Detection with Supervised Pyramid Context Network
Scene text detection methods based on deep learning have achieved remarkable results over the past years. However, due to the high diversity and complexity of natural scenes, previous state-of-the-art text detection methods may still produce a considerable amount of false positives, when applied to images captured in real-world environments. To tackle this issue, mainly inspired by Mask R-CNN, we propose in this paper an effective model for scene text detection, which is based on Feature Pyramid Network (FPN) and instance segmentation. We propose a supervised pyramid context network (SPCNET) to precisely locate text regions while suppressing false positives.Benefited from the guidance of semantic information and sharing FPN, SPCNET obtains significantly enhanced performance while introducing marginal extra computation. Experiments on standard datasets demonstrate that our SPCNET clearly outperforms start-of-the-art methods. Specifically, it achieves an F-measure of 92.1% on ICDAR2013, 87.2% on ICDAR2015, 74.1% on ICDAR2017 MLT and 82.9% o
The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds
The aim of this study was to assess the stiffness of each lower limb joint in healthy persons walking at varying speeds when fatigued. The study included 24 subjects (all male; age: 28.16 ± 7.10 years; height: 1.75 ± 0.04 m; weight: 70.62 ± 4.70 kg). A Vicon three-dimensional analysis system and a force plate were used to collect lower extremity kinematic and kinetic data from the participants before and after walking training under various walking situations. Least-squares linear regression equations were utilized to evaluate joint stiffness during single-leg support. Three velocities significantly affected the stiffness of the knee and hip joint (p < 0.001), with a positive correlation. However, ankle joint stiffness was significantly lower only at maximum speed (p < 0.001). Hip stiffness was significantly higher after walking training than that before training (p < 0.001). In contrast, knee stiffness after training was significantly lower than pre-training stiffness in the same walking condition (p < 0.001). Ankle stiffness differed only at maximum speed, and it was significantly higher than pre-training stiffness (p < 0.001). Walking fatigue appeared to change the mechanical properties of the joint. Remarkably, at the maximum walking velocity in exhaustion, when the load on the hip joint was significantly increased, the knee joint’s stiffness decreased, possibly leading to joint instability that results in exercise injury
Effects of Drought Hardening and Saline Water Irrigation on the Growth, Yield, and Quality of Tomato
Drought hardening could promote the development of plant roots, potentially improving the resistance of crops to other adversities. To investigate the response and resistance of physiological and growth characteristics induced by drought hardening to salt stress in the later stages, a greenhouse experiment was carried out from 2021 to 2022 with one blank control treatment and twelve treatments that comprised combinations of four irrigation regimes (W1 = 85%, W2 = 70%, W3 = 55%, and W4 = 40% of the field capacity) and three irrigation water salinity levels (S2, S4, and S6, referring to 2 g, 4 g, and 6 g of sodium chloride added to 1000 mL of tap water, respectively). The results show that saline water irrigation introduced a large amount of salt into the soil, resulting in the deterioration of tomato growth, physiology, yield, and water use efficiency (WUE), but had a positive, significant effect on fruit quality. When the irrigation water salinity was 2 g L−1, the W2 treatment could reduce soil salt accumulation, even at the end of the maturation stage; consequently, enhancing the increments in plant height and leaf area index during the whole growing stage. The physiological activity of tomato plants under the W2 and W3 treatments showed a promoting effect. Correspondingly, the maximum values of the fruit quality of tomato plants irrigated with the same saline water were all obtained with the W2 or W3 treatment. However, the yield and WUE of the W3 treatment were lower than that of the W2 treatment, which was the highest among the same saline water irrigation treatments, consistent with the reflection of the changing trend of the ratio of fresh weight to dry weight. Overall, drought hardening can be considered an economically viable approach to mitigate the hazards of saline water irrigation, and the W2S2 combination is recommended for tomato production due to the maximum values of yield and WUE with a higher fruit quality among the twelve saline water irrigation treatments
Optimization of Ethanol Detection by Automatic Headspace Method for Cellulose Insulation Aging of Oil-immersed Transformers
The method using ethanol to evaluate the cellulose insulation aging condition of oil-immersed transformers has been proposed. At present, the dominating method for detecting ethanol in insulating oil is to use headspace–gas-chromatography–mass-spectrometry (HS-GC-MS). However, the problem of quantitative inaccuracy will be sometimes encountered in the actual detection process due to improper instrument parameter setting and improper manual operation. In this study, as an aging marker, ethanol in transformer insulating oil was separated by using VF-624 ms capillary column. The effects of gas-chromatography–mass-spectrometry (GC-MS) optimization conditions, headspace equilibrium temperature, headspace equilibrium time and standard solution preparation method on the determination of ethanol content in oil were discussed, and optimized measures were proposed. The experimental results showed that the measurement can be more accurate under the headspace temperature of 80 °C and the headspace time of 40 min, and relative standard deviation percentage (RSD%) could reach to 4.62% under this condition. It was also pointed out that, for the preparation of standard solution, the method which controlled the sampling volume of anhydrous ethanol by microliter syringe could make the peak area of ethanol chromatogram have a better linear relationship with the standard curve. Under the similar linear range, the goodness of fitting curve without diluting process could be as high as 0.9993, while the method of preparing the stock solution and diluting stepwise to obtain the fitting curve only had a goodness of 0.9910. The method was validated by standard addition recovery test, and the recovery values obtained were between 90.3% and 95.8%. The optimized method is of great significance for the measurement of ethanol dissolved in insulating oil
Subpathway Analysis of Transcriptome Profiles Reveals New Molecular Mechanisms of Acquired Chemotherapy Resistance in Breast Cancer
Chemoresistance has been a major challenge in the treatment of patients with breast cancer. The diverse omics platforms and small sample sizes reported in the current studies of chemoresistance in breast cancer limit the consensus regarding the underlying molecular mechanisms of chemoresistance and the applicability of these study findings. Therefore, we built two transcriptome datasets for patients with chemotherapy-resistant breast cancers—one comprising paired transcriptome samples from 40 patients before and after chemotherapy and the second including unpaired samples from 690 patients before and 45 patients after chemotherapy. Subsequent conventional pathway analysis and new subpathway analysis using these cohorts uncovered 56 overlapping upregulated genes (false discovery rate [FDR], 0.018) and 36 downregulated genes (FDR, 0.016). Pathway analysis revealed the activation of several pathways in the chemotherapy-resistant tumors, including those of drug metabolism, MAPK, ErbB, calcium, cGMP-PKG, sphingolipid, and PI3K-Akt, as well as those activated by Cushing’s syndrome, human papillomavirus (HPV) infection, and proteoglycans in cancers, and subpathway analysis identified the activation of several more, including fluid shear stress, Wnt, FoxO, ECM-receptor interaction, RAS signaling, Rap1, mTOR focal adhesion, and cellular senescence (FDR < 0.20). Among these pathways, those associated with Cushing’s syndrome, HPV infection, proteoglycans in cancer, fluid shear stress, and focal adhesion have not yet been reported in breast cancer chemoresistance. Pathway and subpathway analysis of a subset of triple-negative breast cancers from the two cohorts revealed activation of the identical chemoresistance pathways