14 research outputs found

    Nano-additive manufacturing of multilevel strengthened aluminum matrix composites

    Get PDF
    Nanostructured materials are being actively developed, while it remains an open question how to rapidly scale them up to bulk engineering materials for broad industrial applications. This study propose an industrial approach to rapidly fabricate high-strength large-size nanostructured metal matrix composites and attempts to investigate and optimize the deposition process and strengthening mechanism. Here, advanced nanocrystalline aluminum matrix composites (nanoAMCs) were assembled for the first time by a novel nano-additive manufacturing method that was guided by numerical simulations (i.e. the in-flight particle model and the porefree deposition model). The present nanoAMC with a mean grain size <50 nm in matrix exhibited hardness eight times higher than the bulk aluminum and shows the highest hardness among all Al–Al2O3 composites reported to date in the literature, which are the outcome of controlling multiscale strengthening mechanisms from tailoring solution atoms, dislocations, grain boundaries, precipitates, and externally introduced reinforcing particles. The present high-throughput strategy and method can be extended to design and architect advanced coatings or bulk materials in a highly efficient (synthesizing a nanostructured bulk with dimensions of 50 × 20 × 4 mm3 in 9 min) and highly flexible (regulating the gradient microstructures in bulk) way, which is conducive to industrial production and application

    Extreme Coronal Line Emitters: Tidal Disruption of Stars by Massive Black Holes in Galactic Nuclei?

    Full text link
    Tidal disruption of stars by supermassive black holes at the centers of galaxies is expected to produce unique emission line signatures, which have not yet been explored adequately. Here we report the discovery of extremely strong coronal lines from [Fe X] up to [Fe XIV] in a sample of seven galaxies (including two recently reported cases), that we interpret as such signatures. This is the first systematic search for objects of this kind, by making use of the immense database of the Sloan Digital Sky Survey. The galaxies, which are non-active as evidenced by the narrow-line ratios, show broad emission lines of complex profiles in more than half of the sample. Both the high ionization coronal lines and the broad lines turn out to be fading on time scales of years in objects observed with spectroscopic follow-ups, suggesting their transient nature. Variations of inferred non-stellar continua, which have absolute magnitudes of at least -16 to -18 mag in the g band, are also detected in more than half of the sample. These extreme coronal line emitters reside in sub-L_* disk galaxies (-21.3 < M_i < -18.5) with small stellar velocity dispersions. The sample seems to form two distinct types based on the presence or absence of the [Fe VII] lines, with the latter having relatively low luminosities of [O III], [Fe XI], and the host galaxies. These characteristics can most naturally be understood in the context of transient accretion onto intermediate mass black holes at galactic centers following tidal disruption of stars in a gas-rich environment. We estimate the incidence of such events to be around 10^-5 per year for a galaxy with -21.5 < M_i < -18.5.Comment: 32 pages, 12 figures, ApJ accepted, typos correcte

    Understand the Chinese Z Generation consumers’ Green hotel visit intention: An Extended Theory of Planned Behavior Model

    No full text
    In the context of growing environmental concerns and a shift towards sustainable tourism, understanding the behaviors of younger generations, particularly Generation Z, becomes crucial for the hotel industry. This study investigates the intentions of Chinese Generation Z consumers to visit green hotels, using an extended Theory of Planned Behavior (TPB) model incorporating multi-dimensional green perceived value. A questionnaire survey with 436 participants was conducted, and structural equation modeling was employed for data analysis. The study reveals that Functional value significantly shapes the inclination towards green hotels among Chinese Generation Z. Emotional value and Subjective norms also positively influence visit intentions, whereas social value, although not a significant driver, provides insights into the distinct nature of green consumption behaviors. This study's findings offer strategic insights for green hotel operators and policymakers to attract this demographic segment, emphasizing Chinese Generation Z consumers' unique preferences and values

    Significance of Melt Pool Structure on the Hydrogen Embrittlement Behavior of a Selective Laser-Melted 316L Austenitic Stainless Steel

    No full text
    The hydrogen embrittlement (HE) behavior of a selective laser-melted (SLM) 316L austenitic stainless steel has been investigated by hydrogen charging experiments and slow strain rate tensile tests (SSRTs) at room temperature. The results revealed that compared to the samples without H, the ultimate tensile strength (UTS) and elongation (EL) of specimens were decreased from 572 MPa to 552 MPa and from 60% to 36%, respectively, after 4 h of electrochemical hydrogenation with a current density of 100 mA/cm2. The negative effects of hydrogen charging were more pronounced on the samples’ ductility than on their strength. A quasi in situ EBSD observation proved that there was little phase transformation in the samples but an increased density of low angle grain boundaries, after 4 h H charging. After strain was applied, the surface of the H-sample displayed many hydrogen-induced cracks along the melt pool boundaries (MPBs) showing that these MPBs were the preferred areas for the gathering and transferring of hydrogen

    Nano-additive manufacturing of multilevel strengthened aluminum matrix composites

    No full text
    Nanostructured materials are being actively developed, while it remains an open question how to rapidly scale them up to bulk engineering materials for broad industrial applications. This study propose an industrial approach to rapidly fabricate high-strength large-size nanostructured metal matrix composites and attempts to investigate and optimize the deposition process and strengthening mechanism. Here, advanced nanocrystalline aluminum matrix composites (nanoAMCs) were assembled for the first time by a novel nano-additive manufacturing method that was guided by numerical simulations (i.e. the in-flight particle model and the porefree deposition model). The present nanoAMC with a mean grain size <50 nm in matrix exhibited hardness eight times higher than the bulk aluminum and shows the highest hardness among all Al–Al _2 O _3 composites reported to date in the literature, which are the outcome of controlling multiscale strengthening mechanisms from tailoring solution atoms, dislocations, grain boundaries, precipitates, and externally introduced reinforcing particles. The present high-throughput strategy and method can be extended to design and architect advanced coatings or bulk materials in a highly efficient (synthesizing a nanostructured bulk with dimensions of 50 × 20 × 4 mm ^3 in 9 min) and highly flexible (regulating the gradient microstructures in bulk) way, which is conducive to industrial production and application

    Superelastic 3D Assembled Clay/Graphene Aerogels for Continuous Solar Desalination and Oil/Organic Solvent Absorption

    No full text
    Abstract Superelastic, arbitrary‐shaped, and 3D assembled clay/graphene aerogels (CGAs) are fabricated using commercial foam as sacrificial skeleton. The CGAs possess superelasticity under compressive strain of 95% and compressive stress of 0.09–0.23 MPa. The use of clay as skeletal support significantly reduces the use of graphene by 50%. The hydrophobic CGAs show high solvent absorption capacity of 186–519 times its own weight. Moreover, both the compression and combustion methods can be adopted for reusing the CGAs. In particular, it is demonstrated a design of 3D assembled hydrophilic CGA equipped with salt collection system for continuous solar desalination. Due to energy recovery and brine transport management promoted by this design, the 3D assembled CGA system exhibits an extremely high evaporation rate of 4.11 kg m−2 h−1 and excellent salt‐resistant property without salt precipitation even in 20 wt% brine for continuous 36 h illumination (1 kW m−2), which is the best reported result from the solar desalination devices. More importantly, salts can be collected conveniently by squeezing and drying the solution out of the salt collection system. The work provides new insights into the design of 3D assembled CGAs and advances their applications in continuous solar desalination and efficient oil/organic solvent adsorption

    Methylglyoxal from gut microbes boosts radiosensitivity and radioimmunotherapy in rectal cancer by triggering endoplasmic reticulum stress and cGAS-STING activation

    No full text
    Background Preoperative radiation therapy (preRT) is a fundamental aspect of neoadjuvant treatment for rectal cancer (RC), but the response to this treatment remains unsatisfactory. The combination of radiation therapy (RT) and immunotherapy (iRT) presents a promising approach to cancer treatment, though the underlying mechanisms are not yet fully understood. The gut microbiota may influence the response to RT and immunotherapy. Therefore, we aimed to identify the metabolism of gut microbiota to reverse radioresistance and enhance the efficacy of iRT.Methods Fecal and serum samples were prospectively collected from patients with locally advanced rectal cancer (LARC) who had undergone pre-RT treatment. Candidate gut microbiome-derived metabolites linked with radiosensitization were screened using 16s rRNA gene sequencing and ultrahigh-performance liquid chromatography-mass coupled with mass spectrometry. In vitro and in vivo studies were conducted to assess the radiosensitizing effects of the metabolites including the syngeneic CT26 tumor model and HCT116 xenograft tumor model, transcriptomics and immunofluorescence. The CT26 abscopal effect modeling was employed to evaluate the combined effects of metabolites on iRT.Results We initially discovered the gut microbiota-associated metabolite, methylglyoxal (MG), which accurately predicts the response to preRT (Area Under Curve (AUC) value of 0.856) among patients with LARC. Subsequently, we observed that MG amplifies the RT response in RC by stimulating intracellular reactive oxygen species (ROS) and reducing hypoxia in the tumor in vitro and in vivo. Additionally, our study demonstrated that MG amplifies the RT-induced activation of the cyclic guanosine monophosphate AMP synthase-stimulator of interferon genes pathway by elevating DNA double-strand breaks. Moreover, it facilitates immunogenic cell death generated by ROS-mediated endoplasmic reticulum stress, consequently leading to an increase in CD8+ T and natural killer cells infiltrated in the tumor immune microenvironment. Lastly, we discovered that the combination of anti-programmed cell death protein 1 (anti-PD1) therapy produced long-lasting complete responses in all irradiated tumor sites and half of the non-irradiated ones.Conclusions Our research indicates that MG shows promise as a radiosensitizer and immunomodulator for RC. Furthermore, we propose that combining MG with iRT has great potential for clinical practice

    Detection and Analysis of Degree of Maize Lodging Using UAV-RGB Image Multi-Feature Factors and Various Classification Methods

    No full text
    Maize (Zea mays L.), one of the most important agricultural crops in the world, which can be devastated by lodging, which can strike maize during its growing season. Maize lodging affects not only the yield but also the quality of its kernels. The identification of lodging is helpful to evaluate losses due to natural disasters, to screen lodging-resistant crop varieties, and to optimize field-management strategies. The accurate detection of crop lodging is inseparable from the accurate determination of the degree of lodging, which helps improve field management in the crop-production process. An approach was developed that fuses supervised and object-oriented classifications on spectrum, texture, and canopy structure data to determine the degree of lodging with high precision. The results showed that, combined with the original image, the change of the digital surface model, and texture features, the overall accuracy of the object-oriented classification method using random forest classifier was the best, which was 86.96% (kappa coefficient was 0.79). The best pixel-level supervised classification of the degree of maize lodging was 78.26% (kappa coefficient was 0.6). Based on the spatial distribution of degree of lodging as a function of crop variety, sowing date, densities, and different nitrogen treatments, this work determines how feature factors affect the degree of lodging. These results allow us to rapidly determine the degree of lodging of field maize, determine the optimal sowing date, optimal density and optimal fertilization method in field production

    STING Agonist‐Loaded Nanoparticles Promotes Positive Regulation of Type I Interferon‐Dependent Radioimmunotherapy in Rectal Cancer

    No full text
    Abstract Hypoxia‐associated radioresistance in rectal cancer (RC) has severely hampered the response to radioimmunotherapy (iRT), necessitating innovative strategies to enhance RC radiosensitivity and improve iRT efficacy. Here, a catalytic radiosensitizer, DMPtNPS, and a STING agonist, cGAMP, are integrated to overcome RC radioresistance and enhance iRT. DMPtNPS promotes efficient X‐ray energy transfer to generate reactive oxygen species, while alleviating hypoxia within tumors, thereby increasing radiosensitivity. Mechanistically, the transcriptomic and immunoassay analysis reveal that the combination of DMPtNPS and RT provokes bidirectional regulatory effects on the immune response, which may potentially reduce the antitumor efficacy. To mitigate this, cGAMP is loaded into DMPtNPS to reverse the negative impact of DMPtNPS and RT on the tumor immune microenvironment (TiME) through the type I interferon‐dependent pathway, which promotes cancer immunotherapy. In a bilateral tumor model, the combination treatment of RT, DMPtNPS@cGAMP, and αPD‐1 demonstrates a durable complete response at the primary site and enhanced abscopal effect at the distant site. This study highlights the critical role of incorporating catalytic radiosensitizers and STING agonists into the iRT approach for RC

    A novel generation 1928zT2 CAR T cells induce remission in extramedullary relapse of acute lymphoblastic leukemia

    No full text
    Abstract Background Anti-CD19 chimeric antigen receptor (CAR) T cells have shown promise in the treatment of B cell acute lymphocytic leukemia (B-ALL). However, its efficacy in B-ALL patients with extramedullary involvement is limited due to poor responses and neurotoxicity. Here, we utilized a third generation of CAR T cell vector, which contains the Toll/interleukin-1 receptor (ITR) domain of Toll-like receptor 2 (TLR2), to generate 1928zT2 T cells targeting CD19, and evaluated the efficacy of 1928zT2 T cells in relapse or refractory B-ALL patients with extramedullary involvement. Methods 1928zT2 T cells were generated by 19-28z-TLR2 lentiviral vector transfection into primary human T lymphocytes. The anti-leukemia effect of 1928zT2 T cells were determined by killing assays and in xenografts. Three patients diagnosed as relapse or refractory ALL with extramedullary involvement were infused with 1928zT2 T cells, and the clinical responses were evaluated by BM smear, B-ultrasonography, PET/CT, histology, flow cytometry, qPCR, ELISA, and luminex assay. Results 1928zT2 T cells exhibited enhanced effector function against CD19+ leukemic cells in vitro and in a xenograft model of human extramedullary leukemia. Notably, the 1928zT2 T cells eradicated extramedullary leukemia and induced complete remission in the three relapse and refractory ALL patients without serious adverse effects. 1928zT2 T cells expanded robustly in the circulation of these three patients and were detected in the cerebrospinal fluid of patient 3. These three patients experienced cytokine release syndrome (CRS) with grade 2 or 3, which remitted spontaneously or after tocilizumab treatment. None of the three patients suffered neurotoxicity or needed further intensive care. Conclusions Our results demonstrate that 1928zT2 T cells with TLR2 incorporation augment anti-leukemic effects, particularly for eradicating extramedullary leukemia cells, and suggest that the infusion of 1928zT2 T cells is an encouraging treatment for relapsed/refractory ALL patients with extramedullary involvement. Trial registration ClinicalTrials.gov identifier NCT02822326. Date of registration: July 4, 2016
    corecore