6 research outputs found

    Study on Prevention of Gas Channelling of Acid-resistant Gel Foam in CO

    No full text
    With the shortage of recoverable reserves in conventional oil reservoirs, the development of low-permeability oil reservoirs has received more and more attention. The oil recovery of low-permeability reservoirs can be significantly improved by CO2 flooding, as it can effectively supply formation energy. CO2 flooding is an effective technology for increasing oil production in low-permeability reservoirs. However, because of the heterogeneity of the reservoir and the effect of natural fractures, CO2 gas channelling easily occurs during CO2 flooding, seriously reducing CO2 flooding effect. In this study, the gas channelling technology of acid-resistant gel foam was investigated. Preferred acid-resistant gel foam system formula was found as 0.1% by mass of AOS foaming agent with 0.3% to 0.4% by mass of instant HPAM polymer and 1% to 2% by mass of water-soluble phenolic resin crosslinking agent. This system still has a good foaming ability and blocking performance under at pH=2 and a salinity of 10Ă—104 mg/L. After 60 days of aging under oil reservoir conditions, there is no obvious water separation, and the plugging strength retention rate reached more than 60%. The gel foam channelling system can be applied to highly heterogeneous and low permeability reservoirs with a permeability gradient higher than 14 and can increase the recovery rate by more than 20% based on the CO2 flooding. Acid-resistant gel foam channelling technology can effectively inhibit CO2 gas channelling and improve CO2 flooding effect in low permeability reservoirs

    Near-Infrared Cyanine-Loaded Liposome-like Nanocapsules of Camptothecin–Floxuridine Conjugate for Enhanced Chemophotothermal Combination Cancer Therapy

    No full text
    A dual-in-dual synergistic strategy was proposed based on the self-assembly of combinatorial nanocapsules (NCs) from Janus camptothecin–floxuridine (CF) conjugate and the near-infrared absorber of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR) by introducing PEGylated phospholipid of 1,2-distearoyl-<i>sn</i>-glycero-3-phosphoethanolamine-<i>N</i>-[methoxy­(polyethylene glycerol)-2000] to increase the blood circulation time of NCs. Due to the use of amphiphilic CF and DiR themselves to form liposome-like nanocapsules, the obtained CF–DiR NCs owned a significantly high loading content, a stable co-delivery drug combinations, a no premature release, and an excellent photothermal conversion efficiency. The in vivo fluorescence imaging indicated that CF–DiR NCs could achieve a high tumor accumulation after an intravenous injection. The dual drugs of camptothecin and floxuridine could be coordinately released due to the hydrolysis of the ester bond by the esterase in tumor. The in vivo experiments showed that more cytotoxicity of the CF–DiR NCs-mediated chemo- and photothermal dual therapy to tumor cells could be clearly observed than the chemotherapy or photothermal therapy alone due to the synergistic effect, leading to no recurrence in the entire treatment. All of the results highlighted that CF–DiR NCs were highly effective theranostic agents that could be used for imaging-guided cancer chemophotothermal therapy to conquer an intrinsic resistance to chemotherapeutics

    Integrated Transcriptome and Metabolome Analysis Reveals the Regulatory Mechanisms of <i>FASN</i> in <i>Geese</i> Granulosa Cells

    No full text
    FASN plays a critical role in lipid metabolism, which is involved in regulating ovarian follicular development. However, the molecular mechanisms of how FASN regulate the function of ovarian follicular cells still remain elusive. In this study, by overexpression or interference of FASN in pre-hierarchical follicle granulosa cells (phGCs) and hierarchical follicle granulosa cells (hGCs), we analyzed their effects on the granulosa cell transcriptome and metabolome profiles using RNA-Seq and LC-MS/MS, respectively. The results showed that overexpression of FASN promoted proinflammatory factors expression by activating TLR3/IRF7 and TLR3/NF-ÎşB pathways in phGCs, but only by activating TLR3/IRF7 pathways in hGCs. Then, necroptosis and apoptosis were triggered through the JAK/STAT1 pathway (induced by inflammatory factors) and BAK/caspase-7 pathway, respectively. The combined analysis of the metabolome and transcriptome revealed that FASN affected the demand of GCs for 5-hydroxytryptamine (5-HT) by activating the neuroactive ligand-receptor interaction pathway in two categorized GCs and only altering the metabolic pathway of tryptophan in phGCs, and ultimately participated in regulating the physiological function of geese GCs. Taken together, this study showed that the mechanisms of FASN regulating the physiological function of geese phGCs and hGCs were similar, but they also had some different characteristics
    corecore