222 research outputs found

    Development and validation of a composite score for excessive alcohol use screening

    Get PDF
    This study was undertaken to develop a composite measure that combines the discriminant values of individual laboratory markers routinely used for excessive alcohol use (EAU) for an improved screening performance. The training sample consisted of 272 individuals with known history of EAU and 210 non-alcoholic individuals. The validation sample included 100 EAU and 75 controls. We used the estimated regression coefficients and the observed marker values to calculate the individual's composite screening score; this score was converted to a probability measure for excessive drinking in the given individual. A threshold value for the screening score based on an examination of the estimated sensitivity and specificity associated with different threshold values was proposed. Using regression coefficients estimated from the training sample, a composite score based on the levels of aspartate aminotransferase, alanine aminotransferase, per cent carbohydrate-deficient transferrin and mean corpuscular volume was calculated. The areas under the receiver operating characteristic curve (AUC) value of the selected model was 0.87, indicating a strong discriminating power and the AUC was better than that of each individual test. The score >0.23 corresponded to a sensitivity of 90% and a specificity of nearly 60%. The AUC value remained at a respectable level of 0.83 with the sensitivity and specificity at 91% and 49%, respectively, in the validation sample. We developed a novel composite score by using a combination of commonly used biomakers. However, the development of the mechanism-based biomarkers of EAU is needed to improve the screening and diagnosis of EAU in clinical practice

    Effective Lifetime of Non-Equilibrium Carriers in Semiconductors from Non-Adiabatic Molecular Dynamics Simulations

    Full text link
    The lifetime of non-equilibrium electrons and holes in semiconductors is crucial for solar cell and optoelectronic applications. Non-adiabatic molecular dynamics (NAMD) simulations based on time-dependent density functional theory (TDDFT) are widely used to study excited-state carrier dynamics. However, the calculated carrier lifetimes are often different from experimental results by orders of magnitude. In this work, by revisiting the definition of carrier lifetime and considering different recombination mechanisms, we report a systematic procedure for calculating the effective carrier lifetime in realistic semiconductor crystals that can be compared directly to experimental measurements. The procedure shows that considering all recombination mechanisms and using reasonable densities of carriers and defects are crucial in calculating the effective lifetime. When NAMD simulations consider only Shockey-Read-Hall (SRH) defect-assisted and band-to-band non-radiative recombination while neglect band-to-band radiative recombination, and the densities of non-equilibrium carriers and defects in supercell simulations are much higher than those in realistic semiconductors under solar illumination, the calculated lifetimes are ineffective and thus differ from experiments. Using our procedure, the calculated effective lifetime of the halide perovskite CH3NH3PbI3 agrees with experiments. It is mainly determined by band-to-band radiative and defect-assisted non-radiative recombination, while band-to-band non-radiative recombination is negligible. These results indicate that it is possible to calculate carrier lifetimes accurately based on NAMD simulations, but the directly calculated values should be converted to effective lifetimes for comparison to experiments. The revised procedure can be widely applied in future carrier lifetime simulations.Comment: 30 pages, 5 figure

    Integrative analysis of chloroplast genome, chemicals, and illustrations in Bencao literature provides insights into the medicinal value of Peucedanum huangshanense

    Get PDF
    The genus Peucedanum L. (Apiaceae) is a large group comprising more than 120 species distributed worldwide. Many plants of the genus Peucedanum have been studied and used in traditional Chinese medicine. In 2020, a new species, Peucedanum huangshanense Lu Q. Huang, H. S. Peng & S. S. Chu, was found in the Huangshan Mountains of Anhui Province, China. However, little is known about its medicinal properties. Thus, the objective of this study is to explore the potential medicinal value of P. huangshanense and its relationship with other Peucedanum species. Through textual research on illustrations of Qianhu in Bencao literature, it can be inferred that at least five species of genus Peucedanum have been used in Chinese medicine. Therefore, we chose these five species of Peucedanum and P. huangshanense together for subsequent research. We conducted morphological, chloroplast genome, and chemical analyses of six Peucedanum species, including the newly discovered P. huangshanense. The chloroplast genomes of Peucedanum showed a typical tetrad structure, and the gene structure and content were similar and conservative. There were significant differences in genome size and the expansion of the inverted repeat boundary. Through nucleotide polymorphism analysis, we screened 14 hotspot mutation regions that have the potential to be used as specific molecular markers for the taxonomy of Peucedanum. Our results showed an inversion of the trnD-trnY-trnE gene in the P. huangshanense chloroplast genome, which can be developed as a specific molecular marker for species identification. Phylogenetic analysis showed that the phylogenetic trees had high support and resolution, which strongly supports the view that Peucedanum is not a monophyletic group. P. huangshanense had the closest genetic relationship to P. ampliatum K. T. Fu, followed by P. harry-smithii Fedde ex Wolff. Furthermore, the main coumarins of P. huangshanense were most similar to those of P. japonicum Thunb. and P. harry-smithii. In summary, our research lays a foundation for the systematic classification of Peucedanum and sheds light on the medicinal value of P. huangshanense

    Formation criterion for binary metal diboride solid solutions established through combinatorial methods

    Get PDF
    Establishing the formation criterion is urgent for accelerating the discovery and design of solid-solution materials with desirable properties. The previously reported formation criterion mainly focused on solid-solution alloys, while the formation criterion was rarely established in solid-solution ceramics. To solve this problem, herein, we take a class of solid-solution ceramics, namely binary metal diboride ((MxN1-x)B-2) solid solutions, as a prototype. Through combinatorial methods including high-throughput molten salt syntheses and high-throughput first-principles calculations combined with the machine learning approach, the correlation between influential factors, including atomic size difference (delta), mixing enthalpy at 0 K and 0 Pa (Delta Hmix0K), doping condition (phi), and valence electron concentration (VEC), and the formation ability of (MxN1-x)B-2 solid solutions was first studied systematically, and then their formation criterion was well established. The results showed that the influential degree of the aforementioned four factors on the formation ability of (MxN1-x)B-2 solid solutions could be described as follows: delta \u3e Delta Hmix0K\u3e phi \u3e VEC. In addition, a newly proposed parameter, beta, could well reflect the formation ability of (MxN1-x)B-2 solid solutions: when beta \u3e 0, the single-phase (MxN1-x)B-2 solid solutions could be successfully synthesized in our work and vice versa. This study may provide a theoretical guidance in the discovery and design of various solid-solution ceramics, such as the metal borides, carbides, nitrides, etc, with desirable properties

    Spatial metabolomics in head and neck tumors: a review

    Get PDF
    The joint analysis of single-cell transcriptomics, proteomics, lipidomics, metabolomics and spatial metabolomics is continually transforming our understanding of the mechanisms of metabolic reprogramming in tumor cells. Since head and neck tumor is the sixth most common tumor in the world, the study of the metabolic mechanism of its occurrence, development and prognosis is still undeveloped. In the past decade, this field has witnessed tremendous technological revolutions and considerable development that enables major breakthroughs to be made in the study of human tumor metabolism. In this review, a comprehensive comparison of traditional metabolomics and spatial metabolomics has been concluded, and the recent progress and challenges of the application of spatial metabolomics combined multi-omics in the research of metabolic reprogramming in tumors are reviewed. Furthermore, we also highlight the advances of spatial metabolomics in the study of metabolic mechanisms of head and neck tumors, and provide an outlook of its application prospects

    Plant-based diets and body composition in Chinese omnivorous children aged 6–9 years old: A cross-sectional study

    Get PDF
    Evidence suggests that plant-based diets are beneficial for alleviating metabolic diseases. Childhood is a crucial period for body growth and development. However, it is unknown whether adherence to a plant-based diet is related to a healthy body composition in children. We aimed to assess the relationship between a plant-based diet and body composition in children. A total of 452 Chinese children aged 6–9 years old participated in this cross-sectional study. Lean mass (LM), fat mass, and fat mass percentage (FMP) were assessed via dual-energy X-ray absorptiometry. An age- and sex-specific abdominal FMP ≥85th percentile was defined as abdominal obesity. Handgrip strength was measured using a hydraulic hand dynamometer. A validated 79-item food frequency questionnaire was used to collect dietary information. Overall plant-based diet index (PDI), healthful plant-based diet index (hPDI), and unhealthful plant-based diet index (uPDI) scores were calculated. After adjusting for potential covariates, a higher hPDI score (per 10-score increment) was associated with a higher LM in the android area (0.038 kg, 3.2%), gynoid area (0.048 kg, 1.9%), and trunk (0.102 kg, 1.2%) and with a lower FMP (1.18%) in the android area. In contrast, a higher uPDI score (per 10-score increment) was associated with a lower LM in the trunk (0.091 kg, 1.1%) and android area (0.023 kg, 1.9%) and with a higher FMP (0.74%) in the android area. No significant associations were observed between the overall PDI and body composition or abdominal obesity. After stratifying by sex, higher (vs. lower) hPDI scores was associated with lower abdominal obesity risk in girls and higher handgrip strength in boys. In conclusion, in this cross-sectional study, we found that stronger adherence to a healthful plant-based diet, and less adherence to an unhealthful plant-based diet was associated with better body composition in Chinese omnivorous children aged 6–9 years old. Our results highlight the need to distinguish between healthy and unhealthy plant foods within investigating how to obtain a healthy body composition in children

    Shifts of Hydrogen Metabolism From Methanogenesis to Propionate Production in Response to Replacement of Forage Fiber With Non-forage Fiber Sources in Diets in vitro

    Get PDF
    The rumen microbial complex adaptive mechanism invalidates various methane (CH4) mitigation strategies. Shifting the hydrogen flow toward alternative electron acceptors, such as propionate, was considered to be a meaningful mitigation strategy. A completely randomized design was applied in in vitro incubation to investigate the effects of replacing forage fiber with non-forage fiber sources (NFFS) in diets on methanogenesis, hydrogen metabolism, propionate production and the methanogenic and bacterial community. There are two treatments in the current study, CON (a basic total mixed ration) and TRT (a modified total mixed ration). The dietary treatments were achieved by partly replacing forage fiber with NFFS (wheat bran and soybean hull) to decrease forage neutral detergent fiber (fNDF) content from 24.0 to 15.8%, with the composition and inclusion rate of other dietary ingredients remaining the same in total mixed rations. The concentrations of CH4, hydrogen (H2) and volatile fatty acids were determined using a gas chromatograph. The archaeal and bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the relative abundance of methanogenic and bacterial communities. The results revealed that the concentration of propionate was significantly increased, while the concentration of acetate and the acetate to propionate ratio were not affected by treatments. Compared with CON, the production of H2 increased by 8.45% and the production of CH4 decreased by 14.06%. The relative abundance of Methanomassiliicoccus was significantly increased, but the relative abundance of Methanobrevibacter tended to decrease in TRT group. At the bacterial phylum level, the TRT group significantly decreased the relative abundance of Firmicutes and tended to increase the relative abundance of Bacteroidetes. The replacement of forage fiber with NFFS in diets can affect methanogenesis by shifting the hydrogen flow toward propionate, and part is directed to H2in vitro. The shift was achieved by a substitution of Firmicutes by Bacteroidetes, another substitution of Methanobrevibacter by Methanomassiliicoccus. Theoretical predictions of displacements of H2 metabolism from methanogenesis to propionate production was supported by the dietary intervention in vitro
    • …
    corecore