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Spatial metabolomics in head
and neck tumors: a review
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The joint analysis of single-cell transcriptomics, proteomics, lipidomics,

metabolomics and spatial metabolomics is continually transforming our

understanding of the mechanisms of metabolic reprogramming in tumor cells.

Since head and neck tumor is the sixth most common tumor in the world, the

study of the metabolic mechanism of its occurrence, development and

prognosis is still undeveloped. In the past decade, this field has witnessed

tremendous technological revolutions and considerable development that

enables major breakthroughs to be made in the study of human tumor

metabolism. In this review, a comprehensive comparison of traditional

metabolomics and spatial metabolomics has been concluded, and the recent

progress and challenges of the application of spatial metabolomics combined

multi-omics in the research of metabolic reprogramming in tumors are

reviewed. Furthermore, we also highlight the advances of spatial

metabolomics in the study of metabolic mechanisms of head and neck

tumors, and provide an outlook of its application prospects.
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Abbreviations: MSI, mass spectrometry imaging; PG, prostaglandin; MALDI-MSI, matrix-assisted laser/

desorption ionization mass spectrometry imaging technology; DESI-MSI, desorption electrospray ionization

mass spectrometry imaging; SIMS, secondary ion mass spectrometry; AFADESI-MSI, airflow-assisted

desorption and electrospray ionization mass spectrometry imaging; NMR, nuclear magnetic resonance;

GC-MS, Gas Chromatography-Mass Spectrometry; LC-MS, Liquid Chromatograph-Mass Spectrometer; AI,

artificial intelligence; scRNA-seq, single-cell RNA sequencing; HCQ, hydroxychloroquine; PE, phosphatidyl

ethanolamine; PC, phosphatidylcholine; PI, phosphatidylinositol; TME, tumor microenvironment; BPF,

Bisphenol F; SM, spatial metabolomics; SL, spatial Lipidomics; ST, spatial Transcriptomics; PS,

phosphatidylserine; HNSCC, head and neck squamous cell carcinoma; IHC, immunohistochemical; NPC,

nasopharyngeal carcinoma; PFKFB3, phosphofructokinase-2/fructose-2, 6-Diphosphatase 3; lncRNA, long

non-coding RNA; FA, follicular adenoma; PTC, papillary thyroid carcinoma; FTC, thyroid follicular cancer;

MTC, medullary thyroid cancer; NSCLC, non-small cell lung cancer; BC, breast cancer; CE-MS, capillary

electrophoresis-mass spectrometry imaging; GSH, glutathione; ROS, reactive oxygen species free radicals;

LPC, lysophosphatidylcholine; LYPLA1, LPC-digested lysophospholipase 1; LP, lysophospholipid.
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1 Introduction

Spatial metabolomics (1) is a novel molecular imaging

technology based on mass spectrometry imaging (MSI) (2)

technology. The metabolite on the tissue sections can be collected

and detected point by point through it. It can obtain information on

the content and spatial distribution of numerous molecules such as

endogenous metabolites and exogenous drugs directly from

biological tissues, thus achieving high spatial resolution and

accurate positioning of the metabolite distribution in the tissue.

Consequently, spatial metabolomics is essential to elucidate the

mechanism of the synthesis, accumulation, and regulation

of metabolites.

Tumors are an increasingly serious public health problem

worldwide (3), and statistics have shown that one in six women

and one in five men in the world develop tumors throughout their

lifetime. Despite increasingly advanced methods of early diagnosis

and corresponding treatments resulting in improved patient

survival time, the mortality rate of tumor patients remains high.

In the past few decades, scientists have made great progress in

studying the occurrence and development of tumors and the

mechanism of tumor metabolism (4). The occurrence and

development of tumors require tumor cel l metabolic

reprogramming (5). By autonomously changing the flux of

various metabolic pathways, tumor cells can meet the raising

bioenergy and biosynthesis needs of tumor tissue, and also

alleviate and adapt to the oxidative stress required for tumor cell

proliferation and survival. A growing body of evidence supports

that tumor metabolic reprogramming not only plays a crucial role

in maintaining the cell signaling pathways for tumor occurrence

and survival but also has broader significance in regulating anti-

tumor immune responses by releasing metabolites to affect the

expression of immune molecules such as prostaglandin (PG)

(6).And the metabolic heterogeneity of tumors (7) is an

important part of tumor heterogeneity, which specifically refers to

the significant differences in the metabolic characteristics of

different tumors or within the same tumor tissue. Therefore, due

to the diversity, complexity, and heterogeneity of tumor tissues, we

must analyze several different tissue samples and metabolites to

explore the underlying mechanisms of the occurrence,

development, proliferation, and metastasis of tumors, which has

become a major obstacle limiting research on tumor metabolic

mechanisms (8). Benefiting from improvements in the imaging

resolution and detection sensitivity of the mass spectrometer,

spatial metabolomics can accurately measure the type, content,

and spatial distribution of metabolites in human tissues. This helps

in overcoming a longstanding resolution obstacle, expanding the

dimensions of metabolome information, and greatly improving the

metabolite information depth of tissue samples.

In this review, we mainly summarize the development from

traditional metabolomics to spatial metabolomics combined with

multi-omics analysis, demonstrate the comparison of the

applications of different platforms of spatial metabolomics, and

discuss the data-mining challenges that spatial metabolomics

analysis is facing nowadays. In addition, we orderly review the
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novel applications of spatial metabolism combined with multi-

omics analysis in the study of tumor metabolism mechanism, and

also focus on its latest research in head and neck tumors. Then we

end with the prospects for its application in the diagnosis and

treatment of head and neck tumor metabolism.
2 Traditional metabolomics and
spatial metabolomics

Spatial metabolomics integrates MSI and metabolomics (9)

technology. By using a mass spectrometry imager, metabolites on

tissue sections can be collected and detected point by point. We can

then accurately identify and locate the differential distribution of

various metabolites among tissues and conduct in-depth

metabolomic analyses on the target micro-area tissues. Finally, we

can restore the detected metabolites at each point to a two-

dimensional level so that the qualitative, quantitative, and

localized information of small molecule metabolites can be

obtained at once. (Figure 1)

MSI is a new imaging method that directly scans biological

samples through mass spectrometry technology. It possesses the

advantages of no labeling, multipoint detection, and high

sensitivity, and it can simultaneously analyze the spatial

distribution characteristics of hundreds of molecules on the same

tissue section. With the continuous development of modern science

and technology, and meeting deeper scientific research needs,

various MSI types have been developed, including matrix-assisted

laser/desorption ionization mass spectrometry imaging technology

(MALDI-MSI) (10), desorption electrospray ionization mass

spectrometry imaging (DESI-MSI) (11), 3D imaging — secondary

ion mass spectrometry (SIMS) (12) and so on. Among them,

airflow-assisted desorption and electrospray ionization mass

spectrometry imaging (AFADESI-MSI) (13) has recently acquired

considerable popularity and extensive applications (14, 15). This is

an environmental molecular imaging technique with the

characteristics of wide coverage, high sensitivity, wide dynamic

range, high specificity, and high heterogeneity (16), which can map

out a variety of functional metabolites located in different

metabolic pathways.

The different platforms of MSI and their application conditions

are summarized in the following table (Table 1). For example,

MALDI-MSI possesses the advantage of high spatial resolution (17),

while DESI-MSI possesses the peculiarity of high throughput and

high efficiency (18). And SIMS may cause damage to the surface of

the sample by the ion beam (19), but it has the characteristic of

subcellular imaging (20), high spatial resolution and high efficiency.

The metabolome is a collection of small molecular chemical

entities which can involve in metabolism and maintaining the

normal growth and development of organisms (21), and the

purpose of its research is to find and identify biomarkers in the

diagnosis and prediction of disease. The human metabolome is

affected by changes in the proteome and genome and can be

interpreted as the most downstream end-product of the cellular

phenotype. The metabolome affects cell physiology through
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TABLE 1 Comparison of different platforms of MSI used for spatial metabolomics.

Spatial
resolution

(um)
Whether substrate is needed? Applicable

sample Limitations Advantages

MALDI-
MSI

5-200
Substrate assistance is needed to help ionize
the material.

Biological
macromolecules
(proteins, peptides
and lipids)

The existence of matrix effects;
The operating condition of high
vacuum; Not suitable for large tissue
samples

High spatial
resolution

DESI-MSI 100-500 No.
Small molecules
(metabolites and
lipids)

Low spatial resolution;
Low sensitivity;
Not suitable for large tissue samples

Simple preparation
procedure of sample;
The operating
condition of
atmospheric pressure;
High throughput;
High efficiency

AFADESI-
MSI

40-100

No.
Small molecular material present on the
surface of the sample can be extracted by
organic reagents.

Small molecules
(lipids and small
molecules below
500Da)

Not suitable for large molecules such as
proteins and peptides

The operating
condition of
atmospheric pressure;
Wide range in slice
size

SIMS 0.1-0.5 No. Wide range
The ion beam may cause the
fragmentation and the damage of the
surface of the sample.

Subcellular imaging;
High spatial
resolution;
High efficiency
F
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FIGURE 1

Manufacturing flow for the final spatial metabolic images from the tumor samples.
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regulation at the genomic, transcriptomic, and proteomic levels,

among others. Metabolomics is the science that studies changes in

the metabolome of biological systems (cells, tissues, or organisms)

when stimulated or disturbed. Metabolomics uses advanced

analytical chemical techniques to enable the high-throughput

characterization of metabolites in cells, organs, tissues, or

biological fluids (22, 23). The value of metabolomics has been

redefined from simple biomarker identification tools as techniques

for discovering driving factors of biological process activity. The

development of omics techniques has better improved our

understanding of the normal physiology and the pathophysiology

of many diseases. It is believed that metabolomics not only reflects

altered genetic and proteomic function, but also carries more

information about the cellular phenotype.

Metabolomics is a powerful analytical tool for studying

metabolite spectrum, metabolic changes, metabolic pathways, and

the discovery of biomarkers, so the ultimate goal of studying

metabolomics is to make a qualitative and quantitative analysis of

all metabolites in a biological system as much as possible.

Traditional metabolomics mainly relies on these three technical

platforms: nuclear magnetic resonance (NMR) (24), Gas

Chromatography-Mass Spectrometry (GC-MS) (25), and Liquid

Chromatograph-Mass Spectrometer (LC-MS) (26, 27). The three

platforms each have their advantages and disadvantages. Among

them, the chromatography-mass spectrometry technology

integrates the efficient separation ability of chromatography and

the powerful analysis function of mass spectroscopy. On account of

its characteristics of high sensitivity, wide dynamic range, good

selectivity, and rich information, MSI has become the most

commonly used analysis technology in metabolomics research

and occupies an important position in the metabolomics analysis

of biological samples, such as blood, urine, and cells (28). However,

as for the analysis of metabolites in biological tissues or organs with

a complex structure and high heterogeneity, the analytical method

of chromatography-mass spectrometry technology has its

limitations, as the pretreatment process of tissue homogenization
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and metabolite extraction, purification, and enrichment loses

information on the spatial distribution of metabolites in the

tissue. Therefore, to meet higher-level scientific research needs,

spatial metabolomics has timely emerged.

Advances and developments in spatial metabolomics and MSI

provide new opportunities for demonstrating a spectrum of tumors

with metabolic heterogeneity, but also pose data mining challenges

for the vast amount of qualitative, quantitative, and locational

annotation information obtained from the metabolites in order to

explore meaningful insights from high-dimensional spatial

information. Theodore Alexandrov has reviewed the latest

challenges of spatial metabolomics and MSI data mining through

the perspective of a computational scientist and has listed tools and

software packages for data analysis (29), such as METASPACE (30),

MSiReader (31) and Cardinal packages (32). Moreover, it is

noteworthy that artificial intelligence (AI) and machine learning

have been successfully used to automated metabolite identification

metabolomics in vivo (33), and it is believed that in the near future

they can also be applied to the identification of metabolite in MSI.
3 Spatial metabolomics combined
multi-omics analysis

With the further application of spatial metabolomics, scientists

have found it difficult to systematically and comprehensively

analyze the regulatory mechanism of complex physiological

processes through single-omics data. Hence, other perspectives,

namely, spatial metabolomics combined with multi-omics

analysis techniques, are required (Figure 2). Multi-omics joint

analysis owns the advantages of accuracy, reliability, and depth

(34), which can not only make up for the data problems caused by

data noise and absence in a single omics analysis, but also reduce the

false positive results caused by a single omics analysis through the

mutual verification of multiple omics data resources. Therefore,

multi-omics joint analysis is more conducive to systematically
FIGURE 2

The process of transformation in multi-omics in the research of human tumor’s biology.
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analyzing the multi-level mechanism or phenotype connection of

biological models from different levels and from different

perspectives, which can jointly explore the potential regulatory

network mechanism within organisms, and provide more

evidence for the mechanism of action of living organisms.
3.1 Spatial metabolomics combined with
transcriptomics

The most common method of spatial metabolomics combined

multi-omics analysis is spatial metabolomics combined

transcriptomics (35). Transcriptome sequencing (36) yields a

large number of differential genes and numerous regulatory

networks in tissue samples, but it poses difficulties to identify

critical pathways or key genes controlling them. Metabolites are

the final embodiment of life activities, and the small changes in

phenotypic traits will be amplified exponentially at the metabolic

level. Therefore, we can use the metabolome to reflect the altered

phenotype (37), but the separate metabolome detection cannot

explain the genetic variation that affects the phenotypic changes.

In short, spatial metabolomics combined with transcriptomics can

be visually drawn from the gene transcript products (RNA) to

various metabolites in the inferior metabolic pathways and can

obtain the data of the spatial information simultaneously, thus

exploring biological problems from two levels of both “cause” and

“effect” and verifying each other. Generally speaking, spatial

metabolomics combined with transcriptomics helps us to screen

out key genes, marker metabolites, and regulatory metabolic

pathways from the huge amount of detected data, deeply analyze

the growth and development process of biological systems, and

explain the complexity and integrity of biological processes. It

provides important technical support in the study of

tumorigenesis mechanism, metabolic reprogramming, and early

diagnosis, and also proposes key ideas to solve the problem of

studying the spatial and temporal heterogeneity of tumors.

D.H.Heiland et al. have deeply characterized glioblastoma in

human neocortex slice models with the help of spatial

transcriptomics, metabolomics and proteomics, and single-cell

RNA sequencing (scRNA-seq) (38). By exploring the unique and

common transcriptional programs between patients, they have

inferred that glioblastoma develops along a defined neural lineage

and adapts to inflammatory or metabolic stimuli, which makes

them reminiscent of the reactive transformation of mature

astrocytes. Metabolomics analysis and mass spectrometry imaging

techniques combined analysis supports the hypothesis that tumor

heterogeneity is determined by changes in the microenvironment.

This suggests that glioblastoma cells adopt a transcriptional

program that is similar to the inflammatory transformation of

astrocytes, indicating that the overall changes in local native

tumors and the tumor microenvironment collectively shape its

transcriptional heterogeneity. It points out the forward directions

for further studies of the metabolic reprogramming of glioma cells,

and also provides critical data for adjusting the currently popular

glioblastoma models.
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Such problems often exist in actual scientific research processes,

such as many genes and proteins are obtained after the differential

comparative analysis, but their function seems to be not directly

related to the phenotypic differences. Therefore, the significance of

spatial metabolomics combined with multi-omics analysis is also

reflected here. For the hot topics of the research field, a great

number of reports have revealed the direct association of

phenotypes with some key metabolites. And for emerging themes

of the research fields, combined multi-omics analysis can provide a

more panoramic network of molecular associations. Ultimately,

among all the various differential omics molecules, the interrelated

functional metabolites or pathways are selected for key discussion

and research, to provide more directional guidance for the pioneers

in this field.
3.2 Spatial metabolomics combined
with lipidomics

Lipids are important biomolecules that play multiple roles in

the cellular functions of mammalian organisms. Driven by the

biological significance of lipids, lipidomics (39) is considered a key

member of the multi-omics family to understand disease-specific

dysfunction of lipid metabolism and lipid species associated with

the disease, help to discover biomarkers and targets for monitoring

therapeutic strategies, and to provide insights into tumor lipid

analysis and pathophysiological mechanisms. Compared with

normal cells, the lipid metabolic reprogramming of tumor cells

can significantly affect the growth, proliferation, differentiation,

apoptosis, and drug resistance of cancer cells, and it has been

demonstrated in lung cancer and its subtypes (40). Lipidomics can

detect differences in the abundance of lipids in different samples,

but the differential spatial distribution of lipids cannot be obtained

after the homogenization of tissue samples. Although spatial

metabolomics detects few metabolites, it can sensitively obtain

information on the spatial distribution of lipids. Spatial

metabolomics combined with multi-omics analysis can

complement the weaknesses and complement each other.

To more comprehensively reveal the distribution of anticancer

drugs in tumor tissues in the process of cancer treatment and the

drug’s impact on endogenous lipid metabolites, Yanyan Chen et al.

first simulated the three-dimensional multicellular tumor spheroids

with a complicated tumor microenvironment as a platform for in

vitro research of drugs and endogenous metabolites. After finishing

modeling, combined with MALDI-MSI and lipidomics, they

studied the drug accumulation time and spatial distribution of

hydroxychloroquine (HCQ) and its impact on lipid metabolism in

lung cancer multicellular spheroids (41). The results show that

using HCQ as treatment can significantly affect the changes in lipid

abundance in multicellular spheroids of lung cancer, among which

lipids like phosphatidyl ethanolamine (PE), phosphatidylcholine

(PC), phosphatidylinositol (PI) can be more focused on. These

findings can help us better understand the close relationship

between lipid metabolic reprogramming caused by antitumor

drugs and the tumor microenvironment (TME).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1213273
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zheng et al. 10.3389/fonc.2023.1213273
By using a comprehensive approach of global lipid

metabolomics based on MSI as well as spatial metabolomics,

Chao Zhao et al. investigated the toxic effects of bisphenol F

(BPF) and its potential toxicology mechanisms in breast cancer

xenografts and tumor metastasis-related tissues (e.g. liver and

kidney) in breast cancer xenografts treated with BPF (42).

Moreover, they used lipidomics and spatial metabolomics

techniques to exploit and finally successfully apply a novel

method for the fingerprint map analysis of global lipids and

metabolites in the kidney and liver. The results have shown that

exposure to BPF interferes with the metabolome and liposome of

the liver and kidney, which results in metabolic reprogramming by

activating amino acid biosynthesis and glycolysis metabolism in

liver and kidney tissues. It also disrupts the biosynthesis and

degradation of lipids, leading to abnormal cell membrane

homeostasis and cell function. These observations provide greater

insights into the critical role of metabolic reprogramming in the

biological effects of BPF-induced tumor growth and proliferation.

Chenglong Sun et al. Have proposes an integrated spatially-

resolved multiomics approach to explore cell-specific metabolic

reprogramming and interactions in the microenvironment of

gastric cancer (43). They have conducted Spatial metabolomics

(SM), Spatial Lipidomics (SL) and Spatial Transcriptomics (ST)

analysis on frozen cancer tissue sections from patients with gastric

adenocarcinoma, and depicted spatially-resolved maps of

metabolites, lipids, and gene expression patterns both in tumor

cells and normal cells. They also have found that arginine and

proline metabolism is significantly reprogrammed in gastric

adenocarcinoma: arginine and its synthesis-associated gene ASS1

are both upregulated in tumor sections. And the visualized results

have shown that the expression of most lipids in gastric

adenocarcinoma tissues is elevated except the expression of

Phosphatidylserine (PS) and PI (44). It is notable that an immune

desert phenotype has been found in both the stroma and

parenchyma of gastric cancer tissues, indicating the lack of T cell

tumors, which suggests that the alterations of relevant lipid in

tumor tissues can strongly impact immune cell differentiation and

activation (45).

Multi-omics analysis combined with spatial metabolomics can

improve the integrity of biological information analysis and can

visually detect gene, gene transcripts (RNA), various proteins that

perform different biological functions, and even the various

metabolites in the subordinating metabolic pathways. In

conclusion, multi-omics analysis can help us expand our vision of

the scientific field better and obtain a deeper understanding of the

significance of omics interactions at different levels.

4 New progress and applications of
spatial metabolism in head and neck
tumors

Head and neck tumors are the sixth most common tumor

worldwide (46), with a 5-year overall survival rate of 40% – 50%, of

which head and neck squamous cell carcinoma (HNSCC) accounts

for approximately 90% (47). HNSCC is a family of tumors derived
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from multiple sites, including the mouth, throat, pharynx, sinuses,

and salivary glands, which occurs mainly in the area above the

clavicle and before the cervical spine, and usually does not include

intracranial, cervical, and ocular malignancies. To investigate the

metabolic reprogramming mechanisms of head and neck tumors

and improve the early diagnosis and corresponding treatment of it,

extensive scientific research has been carried out around the world.

Next, we will introduce the new progress in the research and

application of spatial metabolomics in the metabolic mechanism

of head and neck tumors.
4.1 Characterizing metabolic disorders of
head and neck tumor

Energy metabolism reprogramming of tumor cells promotes

rapid cell growth, proliferation, and differentiation by regulating

energy metabolism. And it is considered a unique marker of tumor

cells (48), including aerobic glycolysis, glutaminolysis, and

upregulation of lipid synthesis. Among them, the famous scientist

Otto Heinrich Warburg found the Warburg effect (49) in the 1920s.

Even under the condition of sufficient oxygen supply, tumor cells

prefer glycolysis rather than mitochondrial oxidative

phosphorylation to generate energy, resulting in a high glucose

uptake rate and elevated metabolic lactate content. Compared with

traditional metabolomics, spatial metabolomics can help scientisits

to provide relatively accurate metabolic evidence that drives the

regulation of phenotype and to reflect physiological conditions at

the spatial level well. Therefore, spatial metabolomics has surpassed

traditional diagnostic methods that rely on a few diagnostic

markers, and can effectively characterize tumor metabolic

disorders (50), achieving precision medicine (51).

Metabolic reprogramming of glycolysis is an important aspect

of tumor cells’ adaptation to hypoxia and is one of the marks of

malignancy. Lingzhi Wang et al. have applicated together with LC-

MS, metabolomics, immunohistochemical (IHC) (52) staining, and

other analytical means for the research of the nasopharyngeal

carcinoma (NPC) glucose metabolism process in depth. After the

statistical analysis, they found that the tumor suppressor gene

CYLD increases the stability and nuclear transportation of p53 by

deubiquitination, to downregulate the transcription of

phosphofructokinase-2/fructose-2, 6-Diphosphatase 3 (PFKFB3)

(53), thus inhibiting the glycolysis process in NPC cells. The

latest researches have shown that PFKFB3 has been associated

with various aspects of cancer, including cancer cell proliferation,

vascular invasiveness, drug resistance, and the TME (54).

Furthermore, Baoyu He et al. have identified and functionally

characterized a novel, metabolically relevant, long, non-coding

RNA (lncRNA) LINC00930 (55). The result suggests that

LINC00930 promotes the glycolysis process in NPC cells by up-

regulating the expression of PFKFB3 in NPC. Therefore, the lack of

expression of CYLD enhances the reprogramming of glucose

metabolism and tumor progression and is associated with poor

prognosis in NPC through PFKFB3 upregulation. These

conclusions suggest that CYLD can be used as a clinical

biomarker for predicting NPC prognosis, and that PFKFB3 may
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also be a new therapeutic target for targeted therapy in the

future (56).
4.2 Diagnosis and classification of head
and neck tumors

Early tumor diagnosis is essential to prolong patients’ survival

time and improve their quality of life and prognosis (57). The

traditional methods of early tumor diagnosis mainly include

imaging examination, blood and tumor marker detection,

pathological puncture biopsy, and cell smear examination.

However, due to tumor heterogeneity, it is difficult for these

methods to have both high specificity and sensitivity. After the

diagnosis of tumors, accurate and timely classification and grading

not only influence the survival time of patients, but also play a

decisive role in the selection of treatment options (58).

With the continuous research on the mechanism of tumor

metabolic reprogramming, scientists have found that metabolic

reprogramming of tumor cells is often driven by a variety of

signaling pathways and transcription factors (59). Therefore,

screening of key protein markers of tumor-dependent metabolic

reprogramming has a promising prospect, which is conducive to the

realization of early clinical diagnosis and the development of novel

drugs targeting tumor metabolism (60).

According to the latest application of spatial metabolomics in

the diagnosis and classification of head and neck tumors, Luojiao

Huang et al. have applied spatial metabolomics analysis by using

AFADESI-MSI technology to thyroid tumors (61). Firstly, they

characterized high-resolution, tumor region-specific metabolites

spectra for each pathologic type of thyroid tumors. And then they

identified 83 sets of metabolic biomarkers which could visually

differentiate benign follicular adenoma (FA) from differentiated

thyroid cancers including papillary thyroid carcinoma (PTC) and

thyroid follicular cancer (FTC). Finally, a molecular diagnostic

strategy was established to distinguish between 65 pathologic

thyroid tumors. Overall, the diagnostic models based on the

metabolic spectrum of different types of thyroid tumors, have

showed a prediction accuracy of 83.3%. For the rarer and more

aggressive medullary thyroid cancer (MTC), Andrew Smith et al.

have analyzed tissue samples from 7 patients with MTC with the

MALDI-MSI technology (62). After performing a proteomic

combination analysis, they have identified and selected several

potential tumor markers associated with the pathogenesis of

MTC. These findings can provide a valuable starting point for

further studies on the diagnosis and analysis of thyroid tumors in

the preoperative stage.
4.3 Targeted therapy for head and
neck tumors

Tumor-targeted therapy is defined as the use of drugs that target

different cancer cell targets and do not cause simultaneous harm to

non-cancer cells as conventional chemotherapeutic drugs do (63).

The purpose of investigating targeted therapy is to discover and
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attack specific areas or substances in tumor cells or to detect and

prevent specific signaling molecules that are sent within the tumor

cells that command the growth of tumor cells. Nowadays, tumor-

targeted therapy is widely used in non-small cell lung cancer

(NSCLC) (64, 65), triple-negative breast cancer (BC) (66), and

other cancers. But deeper research of targeted therapy for head and

neck tumors is still in great need.

Recently, amino acid metabolic reprogramming in head and

neck tumor is attracting increasing attention, especially in

glutamine metabolism. Glutamine, despite being a non-essential

amino acid, is the most abundant amino acid in circulation (67). In

the normal human body, the content of glutamine in the blood is

relatively constant, but when the cells are under extremely vigorous

catabolic conditions, the decomposition of glutamine is significantly

elevated (68). Toshimitsu Ohashi et al. have combined capillary

electrophoresis-mass spectrometry imaging (CE-MS) with

metabolomics to comparatively analyze 23 HNSCC patients and 6

patients without cancer. They have proved that glutamine

metabolism was markedly up-regulated in HNSCC tissues, and

glutamine metabolites, such as glutathione (GSH), were

accumulated in HNSCC tissues (69), to mediate the redox balance

of HNSCC tumor cells, and to meet the exuberant needs for energy,

anabolic carbon sources, and nitrogen sources of tumor cells. The

above results indicate that the up-regulation of glutamine

metabolism plays an important role in autophagy regulation in

HNSCC tumor cells through the homeostasis of reactive oxygen

species free radicals (ROS). In the future, we can also continue to

explore anti-tumor drugs targeting glutamine metabolism.

Additionally, the reprogramming of lipid metabolism in head

and neck tumors is also being further researched by scientists

around the world. Normal body cells rely mainly on the free fatty

acids from the food to synthesize the lipid components. Due to the

vigorous metabolism of tumor cells, they need a large amount of

lipid supply. Therefore, tumor cells depend more on de novo fatty

acid synthesis to meet their special lipid needs (70), thus undergoing

lipid metabolism reprogramming (71). Schmidt J et al. have used

the MALDI-MSI technology to search proteins and lipids that are

significantly overexpressed in tumor tissues from numerous

HNSCC samples (72). They have found that in the visible low-

molecular-weight proteins of this laryngeal cancer patient

specimen, S100A8 and S100A9 are highly expressed in the tumor

tissue region, but not in the surrounding healthy tissue. In addition,

they also found that lysophosphatidylcholine (LPC) levels were

significantly decreased, even almost completely abolished in the

tumor region, while the glycerophospholipid PE-P and PC

accumulated significantly. Further research by Kerkhoff C et al.

has found LPC-digested lysophospholipase 1 (Human Acyl-protein

thioesterase 1, LYPLA1) (73) accumulation in the tumor region,

suggesting that the progression of HNSCC in vivo may depend on

lysophospholipid (LP) supply. These findings have confirmed that

the hypoxia-induced fatty acids uptake and lipid droplet

accumulation of tumor cells constitute lipid metabolism

reprogramming, which can effectively prevent the toxicity caused

by ROS accumulation, thus providing higher survival benefits and

treatment resistance for tumor tissues. Furthermore, it is of great

significance to the research of HNSCC metabolic mechanisms and
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provides targets that can be further explored for the treatment of

HNSCC, which has a broad clinical application prospect.

As an important component of personalized cancer therapy,

novel drugs that target to tumor metabolism have progressed from

preclinical studies to clinical trials, and in some cases have shown

great efficacy. It is believed that with the advancement of drug

metabolism analytical technology, researchers will be able to

discover more new drug targets, construct appropriate patient

models and accurately identify target patients, so as to provide

patients with more drug choices and to better improve patients’

survival rate.
5 Conclusions and outlook

In 1927, Otto Heinrich Warburg discovered the Warburg effect

and proposed the concept of metabolic reprogramming of tumor

cells, which made the research on tumor metabolism the focus topic

in tumor research today. Tumor metabolic reprogramming is one of

the important features of malignancy, and aerobic glycolysis is one

of the most typical features. In this review, we firstly summarized

the development and challenges of spatial metabolomics, and the

latest researches of spatial metabolomics combined multi-omics

analysis in the metabolic mechanisms of tumor. On the basis, we

reviewed the novel researches and applications of metabolic

reprogramming in head and neck tumors with the technology of

spatial metabolomics. Finally, we made an outlook of it to

the future.

Firstly, we should understand that the regulation of gene

expression is one of the main sources of genetic variation,

transcription predicts gene function and reveals the sequence of a

gene that can be a cis-acting element, proteins are the executors of

biological function, metabolism is the description of a phenotype,

and morphology is the concrete presentation of regulatory results.

Only through the systematic combination of genomic and

phenomic data, can we truly realize the closed loop of big data

for biological systems. In biological tissues, the global analysis of

non-functional metabolites with spatial distribution is key to

understanding biomolecular processes (5). The diversity and

complexity of tumor tissues and the ubiquity of tumor metabolic

heterogeneity have made tumor metabolic research face a large

dilemma. Therefore, the use of spatial information to characterize

tumor metabolism facilitates our understanding of complex cancer

metabolic reprogramming, the discovery of certain metabolites as

biomarkers for early diagnosis and classification, and the

identification of potential metabolic vulnerabilities that may be

targeted for tumor comprehensive therapy. Compared with the

traditional biological information statistical method, spatial

metabolomics technology is beginning to enter the eyesight of

scientists. It integrates the technical characteristics of MSI and

metabolomics. And it can combine multiple omics to carry out a

comprehensive analysis, with the features of wide coverage, high

sensitivity, wide dynamic range, high specificity, and high

heterogeneity, which can provide visualization results of the

spatial and temporal distribution of metabolites for the study of

tumor metabolic mechanism.
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Up to now, the unique position of spatial metabolomics in the

field of tumor research has been widely recognized, and it has

begun to be applied in the study of metabolic mechanisms of

human tumors and new drug development. In addition to these

studies mentioned above, Jian Shen et al. have evaluated the

response of NSCLC patients to neoadjuvant therapy using

spatial metabolomics (74) to judge the prognosis of patients

better. Judith Martha Neumann et al. have used histology-

guided spatial metabolomics to detect the differences between

the subtypes of NSCLC and to distinguish tumor regions and

stroma regions, which has contributed to the analysis of each

subtype of NSCLC, hence, promoting the development of

therapeutic strategies (75). In conclusion, spatial metabolomics

helps to reveal what has happened in tumor cells at the molecular

level, providing further insight into our understanding of

metabolic reprogramming in tumor cells. Spatial metabolomics,

as a breakthrough technology, brings molecular diagnosis

numerous new opportunities. However, it also faces different

challenges, such as the identification and chromatographic

separation of metabolites and mass spectrometry database

and data sharing issues (76). Fortunately, with advances in

instrumentation, experimental techniques, and analytical

software, many challenges of spatial metabolomics have

been alleviated.

At present, spatial metabolomics has shown a vigorous

development trend in the study of metabolic mechanisms of

human tumors, yet new applications and researches remain

underdeveloped in the field of head and neck tumors. Therefore,

further research is warranted. We have gained many valuable

lessons from research on the metabolism of other human tumors

with the help of spatial metabolomics technology, which offers

important guidance to our otolaryngology head and neck surgeons

to study the metabolic mechanism of head and neck tumors.

Combined with IHC analysis and scRNA-seq of head and neck

tumors previously conducted by our research group (77), we can

also conduct in-depth statistical analysis and research on tumor

metabolism of HNSCC and NPC. By combining spatial

metabolomics with multi-omics analysis and other metabolomics,

we can carry out mutual verification among multi-omics data sets

and systematically analyze the relationship between gene expression

and the phenotype in head and neck tumors from different levels

and perspectives, to further explore the regulatory network of the

pathogenesis of head and neck tumors in vivo, and to provide more

visual evidence for the specific manifestation and intrinsic root of

tumor metabolic reprogramming. Additionally, we are expecting to

discover more sensitive biomarkers for the early diagnosis of head

and neck tumors, and also to discover novel targets for drug-

targeted therapy. If we can combine spatial metabolomics

technology and robot surgery technology into the clinical routine

workflow furtherly, through the study of a large number of clinical

data to screen the appropriate tumor markers, it can be more

efficient, sensitive, and accurate in early diagnosis, classification

diagnosis and intraoperative margin analysis of head and neck

tumors. Furthermore, it can even meaningfully instruct oncology

therapy, hence better prolonging patients’ survival time and

improving their long-term quality of life.
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