672 research outputs found

    Understanding past population dynamics: Bayesian coalescent-based modeling with covariates

    Get PDF
    Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics. Kingman's coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. A major goal of demographic reconstruction is understanding the association between the effective population size and potential explanatory factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates through Gaussian Markov random fields. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change

    Optimal dimensionality for quantum cryptography

    Get PDF
    We perform a comparison of two protocols for generating a cryptographic key composed from d-valued symbols: one exploiting a string of independent qubits and another one utilizing d-level systems prepared in states belonging to d+1 mutually unbiased bases. We show that the protocol based on qubits is optimal for quantum cryptography, since it provides higher security and higher key generation rate.Comment: Revtex, 4 pages, 1 eps figur

    Negative entropy and information in quantum mechanics

    Get PDF
    A framework for a quantum mechanical information theory is introduced that is based entirely on density operators, and gives rise to a unified description of classical correlation and quantum entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be negative when considering quantum entangled systems, a fact related to quantum non-separability. The possibility that negative (virtual) information can be carried by entangled particles suggests a consistent interpretation of quantum informational processes.Comment: 4 pages RevTeX, 2 figures. Expanded discussion of quantum teleportation and superdense coding, and minor corrections. To appear in Phys. Rev. Let

    Quantum conditional operator and a criterion for separability

    Get PDF
    We analyze the properties of the conditional amplitude operator, the quantum analog of the conditional probability which has been introduced in [quant-ph/9512022]. The spectrum of the conditional operator characterizing a quantum bipartite system is invariant under local unitary transformations and reflects its inseparability. More specifically, it is shown that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding 1, which results in a necessary condition for separability. This leads us to consider a related separability criterion based on the positive map Γ:ρ(Trρ)ρ\Gamma:\rho \to (Tr \rho) - \rho, where ρ\rho is an Hermitian operator. Any separable state is mapped by the tensor product of this map and the identity into a non-negative operator, which provides a simple necessary condition for separability. In the special case where one subsystem is a quantum bit, Γ\Gamma reduces to time-reversal, so that this separability condition is equivalent to partial transposition. It is therefore also sufficient for 2×22\times 2 and 2×32\times 3 systems. Finally, a simple connection between this map and complex conjugation in the "magic" basis is displayed.Comment: 19 pages, RevTe

    Dense-coding quantum key distribution based on continuous-variable entanglement

    Get PDF
    We proposed a scheme of continuous-variable quantum key distribution, in which the bright Einstein-Podolsky-Rosen entangled optical beams are utilized. The source of the entangled beams is placed inside the receiving station, where half of the entangled beams are transmitted with round trip and the other half are retained by the receiver. The amplitude and phase signals modulated on the signal beam by the sender are simultaneously extracted by the authorized receiver with the scheme of the dense-coding correlation measurement for continuous quantum variables, thus the channel capacity is significantly improved. Two kinds of possible eavesdropping are discussed. The mutual information and the secret key rates are calculated and compared with those of unidirectional transmission schemes

    Entropic bounds on coding for noisy quantum channels

    Get PDF
    In analogy with its classical counterpart, a noisy quantum channel is characterized by a loss, a quantity that depends on the channel input and the quantum operation performed by the channel. The loss reflects the transmission quality: if the loss is zero, quantum information can be perfectly transmitted at a rate measured by the quantum source entropy. By using block coding based on sequences of n entangled symbols, the average loss (defined as the overall loss of the joint n-symbol channel divided by n, when n tends to infinity) can be made lower than the loss for a single use of the channel. In this context, we examine several upper bounds on the rate at which quantum information can be transmitted reliably via a noisy channel, that is, with an asymptotically vanishing average loss while the one-symbol loss of the channel is non-zero. These bounds on the channel capacity rely on the entropic Singleton bound on quantum error-correcting codes [Phys. Rev. A 56, 1721 (1997)]. Finally, we analyze the Singleton bounds when the noisy quantum channel is supplemented with a classical auxiliary channel.Comment: 20 pages RevTeX, 10 Postscript figures. Expanded Section II, added 1 figure, changed title. To appear in Phys. Rev. A (May 98

    Quantum Distribution of Gaussian Keys with Squeezed States

    Full text link
    A continuous key distribution scheme is proposed that relies on a pair of canonically conjugate quantum variables. It allows two remote parties to share a secret Gaussian key by encoding it into one of the two quadrature components of a single-mode electromagnetic field. The resulting quantum cryptographic information vs disturbance tradeoff is investigated for an individual attack based on the optimal continuous cloning machine. It is shown that the information gained by the eavesdropper then simply equals the information lost by the receiver.Comment: 5 pages, RevTe

    Witnessing effective entanglement in a continuous variable prepare&measure setup and application to a QKD scheme using postselection

    Full text link
    We report an experimental demonstration of effective entanglement in a prepare&measure type of quantum key distribution protocol. Coherent polarization states and heterodyne measurement to characterize the transmitted quantum states are used, thus enabling us to reconstruct directly their Q-function. By evaluating the excess noise of the states, we experimentally demonstrate that they fulfill a non-separability criterion previously presented by Rigas et al. [J. Rigas, O. G\"uhne, N. L\"utkenhaus, Phys. Rev. A 73, 012341 (2006)]. For a restricted eavesdropping scenario we predict key rates using postselection of the heterodyne measurement results.Comment: 12 pages, 12 figures, 2 table

    Role of causality in ensuring unconditional security of relativistic quantum cryptography

    Get PDF
    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not employ collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of ``antedate'' coding).Comment: 9 page

    Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus)

    Get PDF
    More than 20 years ago, hantaviral antigens were reported in tissues of the Eurasian common shrew (Sorex araneus), Eurasian water shrew (Neomys fodiens) and common mole (Talpa europea), suggesting that insectivores, or soricomorphs, might serve as reservoirs of unique hantaviruses. Using RT-PCR, sequences of a genetically distinct hantavirus, designated Seewis virus (SWSV), were amplified from lung tissue of a Eurasian common shrew, captured in October 2006 in Graubünden, Switzerland. Pair-wise analysis of the full-length S and partial M and L segments of SWSV indicated approximately 55%–72% similarity with hantaviruses harbored by Murinae, Arvicolinae, Neotominae and Sigmodontinae rodents. Phylogenetically, SWSV grouped with other recently identified shrew-borne hantaviruses. Intensified efforts are underway to clarify the genetic diversity of SWSV throughout the geographic range of the Eurasian common shrew, as well as to determine its relevance to human health
    corecore