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Abstract.— Effective population size characterizes the genetic variability in a population22

and is a parameter of paramount importance in population genetics and evolutionary23

biology. Kingman’s coalescent process enables inference of past population dynamics24

directly from molecular sequence data, and researchers have developed a number of flexible25

coalescent-based models for Bayesian nonparametric estimation of the effective population26

size as a function of time. Major goals of demographic reconstruction include identifying27

driving factors of effective population size, and understanding the association between the28

effective population size and such factors. Building upon Bayesian nonparametric29

coalescent-based approaches, we introduce a flexible framework that incorporates30

time-varying covariates that exploit Gaussian Markov random fields to achieve temporal31

smoothing of effective population size trajectories. To approximate the posterior32

distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly33

structured Gaussian models. Incorporating covariates into the demographic inference34

framework enables the modeling of associations between the effective population size and35

covariates while accounting for uncertainty in population histories. Furthermore, it can36

lead to more precise estimates of population dynamics. We apply our model to four37

examples. We reconstruct the demographic history of raccoon rabies in North America and38

find a significant association with the spatiotemporal spread of the outbreak. Next, we39

examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along40

with viral isolate count data and find similar cyclic patterns. We compare the population41

history of the HIV-1 CRF02 AG clade in Cameroon with HIV incidence and prevalence42

data and find that the effective population size is more reflective of incidence rate. Finally,43

we explore the hypothesis that the population dynamics of musk ox during the Late44

Quaternary period were related to climate change.45

(Keywords: Coalescent, Effective Population Size, Phylogenetics, Phylodynamics,46

Population Genetics, Gaussian Markov Random Fields)47



The effective population size is an abstract parameter of fundamental importance in48

population genetics, evolutionary biology and infectious disease epidemiology. Wright49

(1931) introduces the concept of effective population size as the size of an idealized50

Fisher-Wright population that gains and loses genetic diversity at the same rate as the real51

population under study. The Fisher-Wright model is a classic forward-time model of52

reproduction that assumes random mating, no selection or migration, and non-overlapping53

generations. Coalescent theory (Kingman 1982a,b) provides a probabilistic model for54

generating genealogies relating samples of individuals arising from a Fisher-Wright model55

of reproduction. Importantly, the coalescent elucidates the relationship between population56

genetic parameters and ancestry. In particular, the dynamics of the effective population57

size greatly inform the shapes of coalescent-generated genealogies. This opens the door for58

the inverse problem of coalescent-based inference of effective population size trajectories59

from gene genealogies.60

While the coalescent was originally developed for constant-size populations,61

extensions that accommodate a variable population size (Slatkin and Hudson 1991;62

Griffiths and Tavaré 1994; Donnelly and Tavaré 1995) provide a basis for estimation of the63

effective population size as a function of time (also called the demographic function). Early64

approaches assumed simple parametric forms for the demographic function, such as65

exponential or logistic growth, and provided maximum likelihood (Kuhner et al. 1998) or66

Bayesian (Drummond et al. 2002) frameworks for estimating the parameters that67

characterized the parametric forms. However, a priori parametric assumptions can be quite68

restrictive, and finding an appropriate parametric form for a given demographic history can69

be time consuming and computationally expensive. To remedy this, there has been70

considerable development of nonparametric methods to infer past population dynamics.71

Nonparametric coalescent-based models typically approximate the effective72

population size as a piecewise constant or linear function. The methodology has evolved73



from fast but noisy models based on method of moments estimators (Pybus et al. 2000;74

Strimmer and Pybus 2001), to a number of flexible Bayesian approaches, including75

multiple change-point models (Opgen-Rhein et al. 2005; Drummond et al. 2005; Heled and76

Drummond 2008), and models that employ Gaussian process-based priors on the77

population trajectory (Minin et al. 2008; Gill et al. 2013; Palacios and Minin 2013).78

Extending the basic methodological framework to incorporate a number of key features,79

including accounting for phylogenetic error (Drummond et al. 2005; Minin et al. 2008;80

Heled and Drummond 2008; Gill et al. 2013), the ability to analyze heterochronous data81

(Pybus et al. 2000; Drummond et al. 2005; Minin et al. 2008; Heled and Drummond 2008;82

Gill et al. 2013; Palacios and Minin 2013), and simultaneous analysis of multilocus data83

(Heled and Drummond 2008; Gill et al. 2013) has hastened progress.84

In spite of all of these advances, there remains a need for further development of85

population dynamics inference methodology. One promising avenue is introduction of86

covariates into the inference framework. A central goal in demographic reconstruction is to87

gain insights into the association between past population dynamics and external factors88

(Ho and Shapiro 2011). For example, Lorenzen et al. (2011) combine demographic89

reconstructions from ancient DNA with species distribution models and the human fossil90

record to elucidate how climate and humans impacted the population dynamics of woolly91

rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox during the Late92

Quaternary period. Lorenzen et al. (2011) show that changes in megafauna abundance are93

idiosyncratic, with different species (and continental populations within species)94

responding differently to the effects of climate change, human encroachment and habitat95

redistribution. Lorenzen et al. (2011) identify climate change as the primary explanation96

behind the extinction of Eurasian musk ox and woolly rhinoceros, point to a combination97

of climatic and anthropogenic factors as the causes of wild horse and steppe bison decline,98

and observe that reindeer remain largely unaffected by any such factors. Similarly, Stiller99



et al. (2010) examine whether climatic changes were related to the extinction of the cave100

bear, and Finlay et al. (2007) consider the impact of domestication on the population101

expansion of bovine species. Comparison of external factors with past population dynamics102

is also a popular approach in epidemiological studies to explore hypotheses about the103

spread of viruses (Lemey et al. 2003; Faria et al. 2014).104

In addition to the association between past population dynamics and potential105

driving factors, it is of fundamental interest to assess the association between effective106

population size and census population size (Crandall et al. 1999; Liu and Mittler 2008; Volz107

et al. 2009; Palstra and Fraser 2012). For instance, Bazin et al. (2006) argue that in108

animals, diversity of mitochondrial DNA (mtDNA) is not reflective of population size,109

whereas allozyme diversity is. Atkinson et al. (2008) follow up by examining whether110

mtDNA diversity is a reliable predictor of human population size. The authors compare111

Bayesian Skyline (Drummond et al. 2005) effective population size reconstructions with112

historical estimates of census population sizes and find concordance between the two113

quantities in terms of relative regional population sizes.114

Existing methods for population dynamics inference do not incorporate covariates115

directly into the model, and associations between the effective population size and116

potentially related factors are typically examined in post hoc fashions that ignore117

uncertainty in demographic reconstructions. We propose to fill this void by including118

external time series as covariates in a generalized linear model framework. We accomplish119

this task by building upon the Bayesian nonparametric Skygrid model of Gill et al. (2013).120

The Skygrid is a particularly well-suited starting point among nonparametric121

coalescent-based models. In most other comparable models, the trajectory change-points122

must correspond to internal nodes of the genealogy, creating a hurdle for modeling123

associations with covariates that are measured at fixed times. The Skygrid bypasses such124

difficulties by allowing users to specify change-points, providing a more natural framework125



for our extension. Furthermore, the Skygrid’s Gaussian Markov random field (GMRF)126

smoothing prior is highly generalizable and affords a straightforward extension to include127

covariates.128

We demonstrate the utility of incorporating covariates into demographic inference129

on four examples. First, we find striking similarities between the demographic and spatial130

expansion of raccoon rabies in North America. Second, we compare and contrast the131

epidemiological dynamics of dengue in Puerto Rico with patterns of viral diversity. Third,132

we examine the population history of the HIV-1 CRF02 AG clade in Cameroon and find133

that the effective population size is more reflective of HIV incidence than prevalence.134

Finally, we explore the relationship between musk ox population dynamics and climate135

change during the Late Quaternary period. Our extension to the Skygrid proves to be a136

useful framework for ascertaining the association between effective population size and137

external covariates while accounting for demographic uncertainty. Furthermore, we show138

that incorporating covariates into the demographic inference framework can improve139

estimates of effective population size trajectories, increasing precision and uncovering140

patterns in the population history that integrate the covariate data in addition to the141

sequence data.142

Methods143

We begin with an overview of coalescent theory and follow with a detailed144

development of the Skygrid inference framework before presenting its extension that145

incorporates external covariate data. Readers interested in previewing our approach to146

include covariates may skip to the section Incorporating Covariates. However, we147

encourage readers who are unfamiliar with the Skygrid to proceed in order.148

Coalescent Theory149



Consider a random sample of n individuals arising from a classic Fisher-Wright150

population model of constant size Ne. The coalescent (Kingman 1982a,b) is a stochastic151

process that generates genealogies relating such a sample. The process begins at the152

sampling time of all n individuals, t = 0, and proceeds backward in time as t increases,153

successively merging lineages until all lineages have merged and we have reached the root154

of the genealogy, which corresponds to the most recent common ancestor (MRCA) of the155

sampled individuals. The merging of lineages is called a coalescent event and there are156

n− 1 coalescent events in all. Let tk denote the time of the (n− k)th coalescent event for157

k = 1, . . . , n− 1 and tn = 0 denote the sampling time. Then for k = 2, . . . , n, the waiting158

time wk = tk−1 − tk is exponentially distributed with rate k(k−1)
2Ne

.159

Researchers have extended coalescent theory to model the effects of recombination160

(Hudson 1983), population structure (Notohara 1990), and selection (Krone and Neuhauser161

1997). We do not, however, incorporate any of these extensions here. The relevant162

extensions for our development generalize the coalescent to accommodate a variable163

population size (Griffiths and Tavaré 1994) and heterochronous data (Rodrigo and164

Felsenstein 1999). The latter occurs when the n individuals are sampled at two or more165

different times.166

Let Ne(t) denote the effective population size as a function of time, where time167

increases into the past. Thus, Ne(0) is the effective population size at the most recent168

sampling time, and Ne(t
′) is the effective population size t′ time units before the most169

recent sampling time. We also refer to Ne(t) as the “demographic function” or170

“demographic model.” Griffiths and Tavaré (1994) show that the waiting time wk between171

coalescent events is given by the conditional density172

P (wk|tk) =
k(k − 1)

2Ne(wk + tk)
exp

[
−
∫ wk+tk

tk

k(k − 1)

2Ne(t)
dt

]
. (1)173



Taking the product of such densities yields the joint density of intercoalescent waiting174

times, and this fact can be exploited to obtain the probability of observing a particular175

genealogy given a demographic function.176

Skygrid Demographic Model177

The Skygrid posits that Ne(t) is a piecewise constant function that can change178

values only at pre-specified points in time known as “grid points.” Let x1, . . . , xM denote179

the temporal grid points, where x1 ≤ x2 ≤ . . . ≤ xM−1 ≤ xM . The M grid points divide the180

demographic history timeline into M + 1 intervals so that the demographic function is fully181

specified by a vector θ = (θ1, . . . , θM+1) of values that it assumes on those intervals. Here,182

Ne(t) = θk for xk−1 ≤ t < xk, k = 1, . . . ,M , where it is understood that x0 = 0. Also,183

Ne(t) = θM+1 for t ≥ xM . Note that xM is the time furthest back into the past at which184

the effective population size can change. The values of the grid points as well as the185

number M of total grid points are specified beforehand by the user. A typical way to select186

the grid points is to decide on a resolution M , let xM assume the value furthest back in187

time for which the data are expected to be informative, and space the remaining grid188

points evenly between x0 = 0 and xM . Alternatively, as discussed in the next section, grid189

points can be selected to align with covariate sampling times in order to facilitate the190

modeling of associations between the effective population size and external covariates.191

Suppose we have m known genealogies g1, . . . , gm representing the ancestries of192

samples from m separate genetic loci with the same effective population size Ne(t). We193

assume a priori that the genealogies are independent given Ne(t). This assumption implies194

that the genealogies are unlinked which commonly occurs when researchers select loci from195

whole genome sequences or when recombination is very likely, such as between genes in196

retroviruses. The likelihood of the vector g = (g1, . . . , gm) of genealogies can then be197



expressed as the product of likelihoods of individual genealogies:198

P (g|θ) =
m∏
i=1

P (gi|θ). (2)199

To construct the likelihood of genealogy gi, let t0i be the most recent sampling time200

of sequences contributing to genealogy i and tMRCAi
be the time of the MRCA for locus i.201

Let xαi
denote the minimal grid point greater than at least one sampling time in the202

genealogy, and xβi the greatest grid point less than at least one coalescent time. Let203

uik = [xk−1, xk], k = αi + 1, . . . , βi, uiαi
= [t0i , xαi

], and ui(βi+1) = [xβi , tMRCAi
]. For each uik204

we let tkj, j = 1, . . . , rk, denote the ordered times of the grid points and sampling and205

coalescent events in the interval. With each tkj we associate an indicator φkj which takes a206

value of 1 in the case of a coalescent event and 0 otherwise. Finally, let vkj denote the207

number of lineages present in the genealogy in the interval [tkj, tk(j+1)]. Following Griffiths208

and Tavaré (1994), the likelihood of observing an interval is209

P (uik|θk) =
∏

1≤j<rk:φkj=1

vkj(vkj − 1)

2θk

rk−1∏
j=1

exp

[
−
vkj(vkj − 1)(tk(j+1) − tkj)

2θk

]
, (3)210

for k = αi, . . . , βi + 1.211

The product of interval likelihoods (3) yields the likelihood of coalescent times given212

the sampling times associated with genealogy gi. However, identical coalescent times can213

arise from distinct genealogies. Immediately prior to a coalescent time tk(j+1), there are vkj214

distinct lineages and therefore
vkj(vkj−1)

2
different pairs of lineages that can merge and result215

in a coalescent event at time tk(j+1). The different possible mergings correspond to different216

genealogies. To obtain the likelihood of a particular genealogy we must account for the fact217

that a specific pair of lineages must merge at each coalescent time. Let P∗(uik|θk) denote218



P (uik|θk) except with factors of the form
vkj(vkj−1)

2θk
replaced by 2(2−1)

2θk
= 1

θk
. Then219

P (gi|θ) =

βi+1∏
k=αi

P∗(uik|θk). (4)220

We introduce some notation that will facilitate the derivation of a Gaussian221

approximation used to construct a Markov chain Monte Carlo (MCMC) transition kernel.222

If cik denotes the number of coalescent events which occur during interval uik, we can write223

P (gi|θ) =

βi+1∏
k=αi

(
1

θk

)cik
exp

[
−SSik

θk

]
, (5)224

where the SSik are appropriate constants. Rewriting this expression in terms of225

γk = log(θk), we arrive at226

P (gi|γ) =

βi+1∏
k=αi

e−γkcik exp[−SSike−γk ] =

βi+1∏
k=αi

exp[−γkcik − SSike−γk ]. (6)227

Invoking conditional independence of genealogies, the likelihood of the vector g of228

genealogies is229

P (g|γ) =
m∏
i=1

P (gi|γ) (7)230

=
m∏
i=1

βi+1∏
k=αi

exp[−γkcik − SSike−γk ] (8)231

= exp

[
M+1∑
k=1

[
−γkck − SSke−γk

]]
(9)232

where ck =
∑m

i=1 cik and SSk =
∑m

i=1 SSik; here, cik = SSik = 0 if k /∈ [αi, βi + 1].233

The Skygrid incorporates the prior assumption that effective population size234



changes continuously over time by placing a GMRF prior on γ:235

P (γ|τ) ∝ τM/2 exp

[
−τ

2

M∑
i=1

(γi+1 − γi)2
]
. (10)236

This prior does not inform the overall level of the effective population size, just the237

smoothness of the trajectory. One can think of the prior as a first-order unbiased random238

walk with normal increments. The precision parameter τ determines how much differences239

between adjacent log effective population size values are penalized. We assign τ a gamma240

prior:241

P (τ) ∝ τa−1e−bτ . (11)242

In the absence of prior knowledge about the smoothness of the effective population size243

trajectory, we choose a = b = 0.001 so that it is relatively uninformative. Conditioning on244

the vector of genealogies, we obtain the posterior distribution245

P (γ, τ |g) ∝ P (g|γ)P (γ|τ)P (τ). (12)246

Incorporating Covariates247

We can incorporate covariates into our inference framework by adopting a248

generalized linear model (GLM) approach. Let Z1, . . . , ZP be a set of P predictors. Each249

covariate Zj is observed or measured at M + 1 time points, s1, . . . , sM , sM+1. Here, si250

denotes the units of time before the most recent sequence sampling time s0 = 0, and251

s0 < s1 < · · · < sM < sM+1. Alternatively, the covariate may correspond to time intervals252

[s0, s1], . . . , [sM−1, sM ], [sM , sM+1] rather than time points (for example, the yearly253

incidence or prevalence of viral infections). In any case, Zij denotes covariate Zj at time254

point or interval i. Skygrid grid points are chosen to match up with measurement times (or255



measurement interval endpoints): x1 = s1, . . . , xM = sM . Then Ne(t) = θk for256

xk−1 ≤ t ≤ xk, k = 1, . . . ,M , and Ne(t) = θM+1 for t ≥ xM . In our GLM framework, we257

model the effective population size on a given interval as a log-linear function of covariates258

γk = log θk = β1Zk1 + · · ·+ βPZkP + wk. (13)259

Here, we can impose temporal dependence by modeling w = (w1, . . . , wM+1) as a zero-mean260

Gaussian process. Adopting this viewpoint, we propose the following GMRF smoothing261

prior on γ:262

P (γ|Z,β, τ) ∝ τM/2 exp
[
−τ

2
(γ − Zβ)′Q(γ − Zβ)

]
. (14)263

In this prior, Z is an (M + 1)× P matrix of covariates and β is a P × 1 vector of264

coefficients representing the effect sizes for the predictors, quantifying their contribution to265

γ. Precision Q is an (M + 1)× (M + 1) tri-diagonal matrix with off-diagonal elements266

equal to −1, Q11 = QM+1,M+1 = 1, and Qii = 2 for i = 2, . . . ,M . Let γ−i denote the vector267

obtained by excluding only the ith component from vector γ. Therefore, conditional on268

γ−i, γi depends only on its immediate neighbors. Let Zi denote the ith row of covariate269

matrix Z. The individual components of γ have full conditionals270

γ1|γ−1 ∼ N

(
Z′1β − Z′2β + γ2,

1

τ

)
, (15)271

γi|γ−i ∼ N

(
Z′iβ +

γi−1 + γi+1 − Z′i−1β − Z′i+1β

2
,

1

2τ

)
(16)272

for i = 2, . . . ,M,273

γM+1|γ−(M+1) ∼ N

(
Z′M+1β − Z′Mβ + γM ,

1

τ

)
. (17)274

As in the original Skygrid GMRF prior, the precision parameter τ governs the smoothness275



of the trajectory and is assigned a gamma prior276

P (τ) ∝ τa−1e−bτ . (18)277

To complete the model specification, we place a relatively uninformative multivariate278

normal prior P (β) on the coefficients β. This yields the posterior279

P (γ,β, τ |g,Z) ∝ P (g|γ)P (γ|Z,β, τ)P (β)P (τ). (19)280

Missing Covariate Data281

It is important to have a mechanism for dealing with unobserved covariate values.282

This is particularly crucial because the population history timeline, which ranges from the283

most recent sampling time to the time of the MRCA, necessitates observations from a wide284

and a priori unknown time span. Let Zobs denote the observed covariate values and Zmis
285

the missing covariate values, so that Z = (Zobs,Zmis). The missing data can be treated as286

extra unknown parameters in a Bayesian model, and they can be estimated provided that287

there is a model that links them to the observed data and other model parameters. We288

have the factorization289

P (γ,Zmis|Zobs,β, τ) = P (γ|Zobs,Zmis,β, τ)P (Zmis|Zobs,β, τ), (20)290

and the marginal density P (γ|Zobs,β, τ) can be recovered by integrating out the missing291

data. As a starting point, we assume a “missing completely at random” structure, meaning292

that the probability that a covariate value is missing is independent of observed covariate293

values and other model parameters. For the priors on missing covariate values in (20), we294

can adopt uniform distributions over plausible ranges.295



Alternatively, we can formulate a prior on the missing covariate data that makes use296

of the observed covariate values. Here, we focus on a common scenario where covariate j is297

observed at times x1, . . . , xK and unobserved at times xK+1, . . . , xM+1. Thus, we can write298

Zobs
j = (Z1j, . . . , ZKj)

′ and Zmis
j = (Z(K+1)j, . . . , Z(M+1)j)

′. We model the joint distribution299

of the observed and missing covariate values as multivariate normal,300

 Zobs
j

Zmis
j

 ∼ N


 µ1

µ2

 ,

 P11 P12

P21 P22


−1 , (21)301

where302

P =

 P11 P12

P21 P22

 (22)303

is the precision matrix. To impose a correlation structure that enforces dependence304

between covariate values corresponding to adjacent times, we adopt a first-order random305

walk with full conditionals306

Z1j|Z−1j ∼ N

(
Z2j,

1

κ

)
, (23)307

Zij|Z−ij ∼ N

(
Z(i−1)j + Z(i+1)j

2
,

1

2κ

)
(24)308

for i = 2, . . . ,M,309

Z(M+1)j|Z−(M+1)j ∼ N

(
ZMj,

1

κ

)
. (25)310

Let ZK denote a vector of dimension M −K with every entry equal to ZKj. Then the311

distribution of missing covariate values conditional on observed covariate values is312

P (Zmis
j |Zobs

j ) ∝ κ(M−K)/2 exp
(
−κ

2
(Zmis

j − ZK)′P22(Z
mis
j − ZK)

)
, (26)313



where314

P22 =



−1 2 −1

. . . . . .

−1 2 −1

−1 1


. (27)315

This technique of positing a random walk covariate distribution and recovering appropriate316

conditional distributions can also be employed for other missing data patterns.317

Markov Chain Monte Carlo Sampling Scheme318

We use MCMC sampling to approximate the posterior319

P (γ,β, τ |g,Z) ∝ P (g|γ)P (γ|Z,β, τ)P (β)P (τ). (28)320

To sample γ and τ , we propose a fast-mixing, block-updating MCMC sampling scheme for321

GMRFs (Knorr-Held and Rue 2002). Suppose we have current parameter values322

(γ(n), τ (n)). First, consider the full conditional density323

P (γ|g,Z,β, τ) ∝ P (g|γ)P (γ|Z,β, τ)324

∝ exp

[
M+1∑
k=1

(−γkck − SSke−γk)

]
τM/2 exp

[
−τ

2
(γ − Zβ)′Q(γ − Zβ)

]
325

= τM/2 exp

[
−τ

2
(γ − Zβ)′Q(γ − Zβ)−

M+1∑
k=1

(γkck + SSke
−γk)

]
326

= τM/2 exp

[
−τ

2
γ ′Qγ + (Zβ)′τQγ −

M+1∑
k=1

(γkck + SSke
−γk)

]
. (29)327

Let hk(γk) = (γkck + SSke
−γk). We can approximate each term hk(γk) by a second-order328



Taylor expansion about, say, γ̂k:329

hk(γk) ≈ hk(γ̂k) + h′k(γ̂k)(γk − γ̂k) +
1

2
h′′k(γ̂k)(γk − γ̂k)2330

= SSke
−γ̂k
(

1

2
γ̂k

2 + γ̂k + 1

)
331

+
[
ck − SSke−γ̂k − SSke−γ̂k γ̂k

]
γk332

+

[
1

2
SSke

−γ̂k
]
γ2k. (30)333

We center the Taylor expansion about a point γ̂ = (γ̂1, . . . , γ̂M+1) obtained iteratively by334

the Newton-Raphson method:335

γ(n+1) = γ(n) − [d2f(γ(n))]
−1(df(γ(n)))

′ (31)336

with γ(0) = γ(n), the current value of γ. Here,337

f(γ) = −1

2
γ ′τQγ + (Zβ)′τQγ −

M+1∑
k=1

(γkck + SSke
−γk) (32)338

with339

df(γ) = −γ ′τQ + (Zβ)′τQ− [c1 − SS1e
−γ1 , ..., cM+1 − SSM+1e

−γM+1 ] (33)340

and341

d2f(γ) = −τQ− diag[SSke
−γk ]. (34)342

Replacing the terms hk(γk) with their Taylor expansions yields the following second-order343



Gaussian approximation to the full conditional density P (γ|g,Z,β, τ) :344

345

P (γ|g,Z,β, τ) ≈ τM/2 exp

[
−1

2
γ ′[τQ + Diag(SSke

−γ̂k)]γ + (τQZβ)′γ346

−
M+1∑
k=1

(ck − SSke−γ̂k − SSke−γ̂k γ̂k)γk

]
, (35)347

348

where Diag(·) is a diagonal matrix.349

Starting from current parameter values (γ(n), τ (n)), we first generate a candidate350

value for the precision, τ ∗ = τ (n)f , where f is drawn from a symmetric proposal351

distribution with density P (f) ∝ f + 1
f

defined on [1/F, F ]. The tuning constant F controls352

the distance between the proposed and current values of the precision. Next, conditional on353

τ ∗, we propose a new state γ∗ using the Gaussian approximation (35) to the full conditional354

density P (γ|g,Z,β, τ ∗). In the final step, the candidate state (τ ∗,γ∗) is accepted or355

rejected according to the Metropolis-Hastings ratio (Metropolis et al. 1953; Hastings 1970).356

Genealogical Uncertainty357

In our development thus far, we have assumed the genealogies g1, . . . , gm are known358

and fixed. However, in reality we observe sequence data rather than genealogies. It is359

possible to estimate genealogies beforehand from sequence data and then infer the effective360

population size from fixed genealogies. However, this ignores the uncertainty associated361

with phylogenetic reconstruction. Alternatively, we can jointly infer genealogies and362

population dynamics from sequence data by combining the estimation procedures into a363

single Bayesian framework.364

We can think of the aligned sequence data Y = (Y1, . . . , Ym) for the m loci as365

arising from continuous-time Markov chain (CTMC) models for molecular character366

substitution that act along the hidden genealogies. Each CTMC depends on a vector of367



mutational parameters Λi, that include, for example, an overall rate multiplier, relative368

exchange rates among characters and across-site variation specifications. We let369

Λ = (Λ1, . . . ,Λm). We then jointly estimate the genealogies, mutational parameters,370

covariate effect size coefficients, precision, and vector of effective population sizes through371

their posterior distribution372

P (g,Λ,β, τ,γ|Y,Z) ∝

[
m∏
i=1

P (Yi|gi,Λi)

]
P (Λ)P (g|γ)P (γ|Z,β, τ)P (β)P (τ). (36)373

Here, the coalescent acts as a prior for the genealogies, and we assume that Λ and g are a374

priori independent of each other. Hierarchical models are however available to share375

information about Λ among loci without strictly enforcing that they follow the same376

evolutionary process (Suchard et al. 2003; Edo-Matas et al. 2011). We implement our377

models in the open-source software program BEAST v1 (Drummond et al. 2012). The378

posterior distribution is approximated through MCMC methods. We combine our379

block-updating scheme for γ and τ with standard transition kernels available in BEAST to380

update the other parameters. The extended Skygrid model will be included in the next381

official release of BEAST v1. In the meantime, it can be accessed by users through the382

BEAST v1 development branch source code, which is available at383

https://github.com/beast-dev/beast-mcmc/. Example BEAST XML input files are384

available as part of the Supplementary Material online385

(http://datadryad.org/resource/doi:10.5061/dryad.mj0hn).386

Empirical Examples387

Expansion in Epizootic Rabies Virus388

https://github.com/beast-dev/beast-mcmc/
http://datadryad.org/resource/doi:10.5061/dryad.mj0hn


Rabies is a zoonotic disease caused by the rabies virus, and is responsible for over389

50,000 human deaths annually. In over 99% of human cases, the rabies virus is transmitted390

by dogs. However, there are a number of other important rabies reservoirs, such as bats391

and several terrestrial carnivore species, including raccoons (WHO 2015b). Epizootic rabies392

among raccoons was first identified in the U.S. in Florida in the 1940s, and the affected393

area of the subsequent expansion was limited to the southeastern U.S. (Kappus et al.394

1970). A second focus of rabies among raccoons emerged in West Virginia in the late 1970s395

due to the translocation of raccoons incubating rabies from the southeastern U.S. The396

virus spread rapidly along the mid-Atlantic coast and northeastern U.S. over the following397

decades, and is one of the largest documented outbreaks in the history of wildlife rabies398

(Childs et al. 2000).399

Biek et al. (2007) examine the population dynamics of the rabies epizootic among400

raccoons in the northeastern U.S. starting in the late 1970s. In a spatiogenetic analysis,401

Biek et al. (2007) compare a coalescent-based Bayesian Skyline estimate (Drummond et al.402

2005) of the demographic history to the spatial expansion of the epidemic. In a post hoc403

approach, the authors find very similar temporal dynamics between the effective404

population size and the 15-month moving average of the area (in square kilometers) of405

counties newly affected by the rabies outbreak each month. The effective population size406

exhibits stages of moderate and rapid growth, as well as plateau periods with little or no407

growth. Population expansion coincides with time periods during which the virus invades408

new areas at a generally increasing rate. On the other hand, the effective population size409

shows little, if any, growth during periods when the virus invades new areas at a declining410

rate. Notably, Biek et al. (2007) demonstrate through their analysis that the largest411

contribution to the population expansion comes from the wave front, highlighting the412

degree to which the overall viral dynamics depend on processes at the wave front. We413

observe the same trends in a Skygrid demographic reconstruction based on the Biek et al.414



Figure 1: Skygrid demographic reconstruction of raccoon rabies epidemic in the northeastern
United States. The gray line is the posterior mean log effective population size trajectory
estimated only from sequence data without incorporating covariate data. The shaded gray
region is the 95% Bayesian credibility interval region for the log effective population size.
The black line represents the covariate, the 15-month moving average of the log-transformed
area of all counties newly affected by the raccoon rabies virus each month.

(2007) sequence data (Figure 1).415

We build upon the analysis of Biek et al. (2007) by incorporating the416

spatiotemporal spread of rabies into the demographic inference model through the Skygrid.417

The sequence data consist of 47 sequences sampled from rabid raccoons between 1982 and418

2004. They encompass the complete rabies nucleoprotein (N) genes as well as large419

portions of the glycoprotein (G) genes. As a covariate, we initially adopt the 15-month420

moving average of the log-transformed area of all counties newly affected by the raccoon421

rabies virus each month from 1977-1999 (Biek et al. 2007). We infer a posterior mean422



covariate effect size of 0.24 with a 95% Bayesian credibility interval (BCI) of (-0.77, 1.27),423

implying that there is not a significant association between the log effective population size424

and the covariate. This is not surprising, considering the patterns of growth and decline in425

the covariate compared with the essentially monotonic trend in the log effective population426

size (see Figure 1).427

Graphically comparing the rate at which the virus invades new areas with428

population dynamics clearly illustrates the relationship between the demographic and429

spatial expansion of the raccoon rabies outbreak. In modeling the association between the430

population dynamics and a covariate, however, we relate the covariate to the total effective431

population size (as opposed to the change in the effective population size). In this case, the432

cumulative affected area is a more suitable covariate than the newly affected area. We433

conduct an additional Skygrid analysis and use the log-transform of the cumulative area434

(in square kilometers) of counties affected by raccoon rabies at various time points between435

1977 and 1999 as a covariate. The area of a county is added to the cumulative total for the436

month during which rabies is first reported in that county. There are 175 months for which437

the cumulative affected area changes, and we specify the grid points to coincide with these438

change points.439

The Skygrid analysis with the log cumulative affected area covariate yields a440

posterior mean estimate of 1.30 for the coefficient β, with a 95% BCI of (0.18, 2.86),441

implying a significant, positive association between the effective population size of the442

raccoon rabies virus and the cumulative area affected by the outbreak (Figure 2). Periods443

of demographic expansion are marked by relatively rapid rates of increase in the affected444

area, while plateaus in the effective population size coincide with more modest rates of445

increase in the affected area. The effective population size trajectory estimated from both446

sequence and covariate data displays nearly identical patterns to the trajectory estimated447

only from sequence data, except from 1990-1996, when its rate of increase is more modest.448



Figure 2: Demographic history of raccoon rabies epidemic in the northeastern United States.
The black line that extends outside the shaded regions represents the covariate, the log
cumulative area of counties affected by raccoon rabies virus. The black line contained within
the shaded regions is the posterior mean log effective population size trajectory from the
Skygrid analysis with the covariate, and the surrounding shaded dark gray region is its
95% Bayesian credibility interval (BCI) region. The white line is the posterior mean log
effective population size trajectory from the Skygrid analysis without the covariate, and the
surrounding shaded light gray region is its 95% BCI region. The two BCI regions overlap
considerably, and the dark gray BCI region is almost entirely contained within the light gray
BCI region.



Notably, the dark gray BCI region inferred from the sequence and covariate data is449

narrower than and virtually entirely contained within the light gray BCI region inferred450

only from the sequence data. Thus including the covariate in this analysis not only yields451

an estimate consistent with what we infer from the sequence data alone, but also a more452

precise estimate.453

Epidemic Dynamics in Dengue Evolution454

Dengue is a mosquito-borne viral infection that causes a severe flu-like illness in455

which potentially lethal syndromes occasionally arise. Dengue is caused by the dengue456

virus, DENV, an RNA virus which comes in four antigenically distinct but closely related457

serotypes, DENV-1 through DENV-4. (WHO 2015a). A recent estimate places the458

worldwide burden of dengue at 390 million infections per year (with 95% confidence459

interval 284-528 million), of which 96 million (67-136 million) manifest clinically (with any460

level of disease severity) (Bhatt et al. 2013). Dengue is found in tropical and sub-tropical461

climates throughout the world, mostly in urban and semi-urban areas (WHO 2015a).462

Dengue incidence records often show patterns of periodicity with outbreaks every463

3-5 years (Cummings et al. 2004; Adams et al. 2006; Bennett et al. 2010). Studies have464

shown that the epidemiological dynamics of dengue transmission in Puerto Rico are465

reflective of changes in the viral effective population size (Bennett et al. 2010; Carrington466

et al. 2005). Bennett et al. (2010) explore the dynamics of DENV-4 in Puerto Rico from467

1981-1998. By post hoc comparing dengue isolate counts to effective population size468

estimates obtained using the Skyride model (Minin et al. 2008), Bennett et al. (2010) show469

that the pattern of cyclic epidemics is highly correlated with similar fluctuations in genetic470

diversity. We build upon their analysis by inferring the effective population size of DENV-4471

in Puerto Rico with DENV-4 isolate counts as a covariate.472



We analyze a data set of 75 DENV-4 sequences, compiled by Bennett et al. (2003)473

through sequencing randomly selected DENV-4 isolates from Puerto Rico from the U.S.474

Centers for Disease Control and Prevention (CDC) sample bank.Each sequence contains475

gene regions amounting to 40% of the viral genome, including all structural genes (capsid:476

C; membrane: M ; and envelope: E), a subset of nonstructural genes (NSI, NS2A, and477

NS4B), and the noncoding 3′ NTR region. The sampling dates include 1982 (n = 14),478

1986/1987 (n = 19), 1992 (n = 15), 1994 (n = 14), and 1998 (n = 13). The covariate data479

consist of the number of DENV-4 isolates recorded over every 6-month period from480

1981-1998. DENV-4 isolate counts are transformed via the map x 7→ log(x+ 1) (this481

specific logarithmic transformation is chosen to accommodate the transformation of isolate482

counts of zero).483

The patterns in the Skygrid demographic reconstructions are generally consistent484

with the isolate count fluctuations, and suggest a periodicity of 3-5 years (Figure 3). This485

concordance is supported by a positive, statistically significant estimate of the coefficient β486

relating the effective population size to isolate counts: a posterior mean of 0.90 with 95%487

BCI (0.36, 1.69).488

The effective population size trajectory inferred from both sequence and covariate489

data is similar to the trajectory estimated only from sequence data, but there are some490

notable differences. The black-colored estimate that incorporates covariate data closely491

reflects the DENV-4 isolate count patterns, but the white-colored trajectory inferred492

entirely from sequence data diverges from the isolate count trends during certain periods.493

First, the white trajectory shows a dramatic increase in effective population size in 1981,494

consistent with a rise in DENV-4 isolates. However, the white trajectory decreases during495

1982 while the DENV-4 isolate counts remain at a high level. Second, the period from late496

1986 to late 1988 begins and ends with relative peaks in DENV-4 isolates, with a trough in497

between. By contrast, the white curve reaches a peak during the isolate trough and is on498



Figure 3: Population and epidemiological dynamics of DENV-4 virus in Puerto Rico. The
top plot depicts Skygrid effective population size estimates. The black line is the posterior
mean log effective population size trajectory from the Skygrid analysis with the covariate,
and the surrounding shaded dark gray region is its 95% Bayesian credibility interval (BCI)
region. The white line is the posterior mean log effective population size trajectory from the
Skygrid analysis without the covariate, and the surrounding shaded light gray region is its
95% BCI region. The two BCI regions overlap considerably, and the dark gray BCI region
is almost entirely contained within the light gray BCI region. The bars in the bottom plot
represent DENV-4 isolate count covariate data.



the decline during the late 1988 peak. Third, the white trajectory shows a trough in the499

effective population size during 1994 that occurs about a year before a similar trough in500

DENV-4 isolates. These discrepancies may be due to biased sampling in isolate counts and501

reflect limitations of epidemiological surveillance. Isolate counts are a rough measure of502

incidence, and their error rates are subject to accurate diagnostic rates by medical503

personnel, reporting rates, and the rate at which suspected cases are submitted for504

isolation (Bennett et al. 2010). On the other hand, the epidemiological trends are not505

necessarily incompatible with the effective population size trajectory estimated entirely506

from sequence data when the latter’s uncertainty is taken into account. The black-colored507

trajectory inferred from both sequence and isolate count data does not deviate from the508

isolate count data in the ways that the white trajectory does. However, the black509

trajectory lies entirely inside the light gray 95% BCI region. Furthermore, apart from a 1.5510

year period in 1981-82, the dark gray 95% BCI region is virtually entirely contained within,511

and is narrower than, the light gray 95% BCI region. Therefore, the Skygrid estimate that512

incorporates the DENV-4 isolate count covariate yields a demographic pattern that reflects513

epidemiological dynamics, and is more precise than, but not incompatible with, the514

effective population size estimate inferred only from sequence data.515

Demographic History of the HIV-1 CRF02 AG Clade in Cameroon516

Circulating recombinant forms (CRFs) are genomes that result from recombination517

of two or more different HIV-1 subtypes and that have been found in at least three518

epidemiologically unrelated individuals. Although CRF02 AG is globally responsible for519

only 7.7% of HIV infections (Hemelaar et al. 2011), it accounts for 60-70% of infections in520

Cameroon (Brennan et al. 2008; Powell et al. 2010).521

We investigate the population history of the CRF02 AG clade in Cameroon by522

examining a multilocus alignment of 336 gag, pol, and env CRF02 AG gene sequences523



sampled between 1996 and 2004 from blood donors from Yaounde and Douala (Brennan524

et al. 2008). Faria et al. (2012) infer the effective population size from this data set with a525

parametric piecewise logistic growth-constant demographic model. Their results point to a526

period of exponential growth up until the mid 1990s, at which point the effective527

population size plateaus. Gill et al. (2013) follow up with a nonparameteric Skygrid analyis528

that reveals a monotonic growth in effective population size that peaks around 1997 and is529

then followed by a decline (rather than a plateau) that persists up until the most recent530

sampling time. We build upon these analyses by introducing two covariates: the yearly531

prevalence of HIV in Cameroon among adults ages 18-49, and the yearly HIV incidence rate532

in Cameroon among adults ages 18-49 (UNAIDS 2015). UNAIDS prevalence and incidence533

estimates for Cameroon only go back to 1990, so we integrate out the missing covariate534

values as described in (26) by modeling the covariate values as a first-order random walk.535

The HIV prevalence increases up until 2000, stays constant for 4 years, and then536

declines slightly in 2004. This differs markedly from the effective population size temporal537

pattern (Figure 4), and this discordance is reflected in the GLM coefficient quantifying the538

prevalence effect size. The coefficient has a posterior mean of 0.85 with 95% BCI (-0.18,539

2.03), indicating no significant association between the effective population size and540

prevalence.541

The coefficient quantifying the effect size for the incidence rate covariate has a542

posterior mean of 9.20 with 95% BCI (1.43, 16.17), implying a significant association543

between the population history of the CRF02 AG clade and the HIV incidence rate among544

adults ages 18-49 in Cameroon. The effective population size and incidence rate display545

similar dynamics: both increase up until a peak around 1997, then decline (Figure 5). The546

posterior mean log effective population size and 95% BCI under the Skygrid model without547

covariates are virtually the same as the Skygrid estimates that incorporate the incidence548

data. This is in contrast to the previous examples we’ve seen, where inclusion of covariates549



Figure 4: Demographic history of HIV-1 CRF02 AG clade in Cameroon. The black line is
the posterior mean log effective population size trajectory, and its 95% Bayesian credibility
interval region is shaded in gray. The bars represent HIV prevalence estimates for adults of
ages 18-49 in Cameroon.



Figure 5: Demographic history of HIV-1 CRF02 AG clade in Cameroon. The black line is
the posterior mean log effective population size trajectory, and its 95% Bayesian credibility
interval region is shaded in gray. The bars represent HIV incidence rate estimates for adults
of ages 18-49 in Cameroon.



affects effective population size estimates, and it may reflect the larger amount of sequence550

data relative to covariate data in this example. It is notable that in this example the551

effective population size is more reflective of incidence than prevalence. This is in552

accordance with expectations put forth by recent epidemiological modeling of infectious553

disease dynamics (Volz et al. 2009; Frost and Volz 2010).554

Population Dynamics of Late Quaternary Musk Ox555

Population decline and extinction of large-bodied mammals characterizes the Late556

Quaternary period (Barnosky et al. 2004; Lorenzen et al. 2011). The causes of these557

megafaunal extinctions remain poorly understood, and much of the debate revolves around558

the impact of climate change and humans (Stuart et al. 2004; Lorenzen et al. 2011).559

Demographic reconstructions from ancient DNA enable clarification of the roles of climatic560

and anthropogenic factors by providing a means to compare demographic patterns over561

geologically significant time scales with paleoclimatic and fossil records (Shapiro et al.562

2004; Lorenzen et al. 2011).563

Campos et al. (2010) employ the Skyride (Minin et al. 2008) and Bayesian Skyline564

(Drummond et al. 2005) models to reconstruct the population dynamics of musk ox dating565

back to the late Pleistocene era from ancient DNA sequences. The musk ox population was566

once widely distributed in the Holarctic ecozone but is now confined to Greenland and the567

Arctic Archipelago, and Campos et al. (2010) explore potential causes of musk ox568

population decline. The authors find that the arrival of humans into relevant areas did not569

correspond to changes in musk ox effective population size. On the other hand, Campos570

et al. (2010) observe that time intervals during which musk ox populations increase571

generally correspond to periods of global climatic cooling, and musk ox populations decline572

during warmer and climatically unstable periods. Thus environmental change, as opposed573



to human presence, emerges as a more promising candidate as a driving force behind musk574

ox population dynamics.575

We apply our extended Skygrid model to assess the relationship between the576

population history of musk ox and climate change. Oxygen isotope records serve as useful577

proxies for temperature in ancient climate studies. Here, we use ice core δ18O data from578

the Greenland Ice Core Project (GRIP) (Johnsen et al. 1997; Dansgaard et al. 1993; GRIP579

Members 1993; Grootes et al. 1993; Dansgaard et al. 1989). δ18O is a measure of oxygen580

isotope composition. In the context of ice core data, lower δ18O values correspond to colder581

polar temperatures. As a covariate, we adopt a mean δ18O value, taking the average of δ18O582

values corresponding to each 3,000-year interval. The sequence data consist of 682 bp of583

the mitochondrial control region, obtained from 149 radiocarbon dated specimens (Campos584

et al. 2010). The ages of the specimens range from the present to 56,900 radiocarbon (14C)585

years before present (YBP). The sampling locations span the demographic range of ancient586

musk ox, with samples from the Taimyr Peninsula (n = 54), the Urals (n = 26), Northeast587

Siberia (n = 12), North America (n = 14) and Greenland (n = 43).588

During each time period that coincides with a monotonically increasing effective589

population size, the δ18O covariate undergoes a net decrease (Figure 6), which suggests a590

general trend of cooling. On the other hand, periods of monotonic demographic decline591

coincide with either a covariate increase (indicative of a warming climate) or covariate592

fluctuations without any clear trends (suggesting climatic instability). These patterns are593

consistent with the observations of Campos et al. (2010). However, the covariate effect size594

has a posterior mean of -0.09 with a 95% BCI of (-0.50, 0.35), indicating that there is not a595

significant association between the log effective population size and the δ18O covariate.596

This is not surprising upon further reflection. The net change in the covariate from the597

beginning to the end of each monotonic phase of the population trajectory lends some598

support to the hypothesis of a negative relationship between the effective population size599



Figure 6: Demographic history of ancient musk ox. The axis is labelled according to ra-
diocarbon years before present. The gray line is the posterior mean log effective population
size trajectory, and its 95% Bayesian credibility interval region is shaded in light gray. The
black line represents the δ18O covariate. We do not infer a significant relationship between
the effective population size and the covariate.

and the δ18O covariate. However, there are numerous fluctuations in the covariate value600

during most of the aforementioned phases that render the relationship insignificant.601

There are more than 5,000 δ18O measurements in the GRIP data corresponding to602

different time points in the musk ox population history timeline. Our default approach is603

to specify Skygrid grid points so that the trajectory has as many piecewise constant604

segments as there are covariate measurement times. To avoid having an inappropriately605

large number of change points, however, we’ve used the average of δ18O values606

corresponding to each 3,000-year interval in the timeline as a covariate. Notably, adopting607

averages over intervals of lengths 1,000, 5,000, or 10,000 years as covariates yields the same608



basic outcome: the effect size of the covariate is not statistically significant.609

While we do not infer a significant association between the log effective population610

size and δ18O covariate values, this does not rule out climate change as a driving force611

behind musk ox population dynamics. The musk ox is known to be very sensitive to612

temperature and is not able to tolerate high summer temperatures (Tener 1965). Using613

species distribution models, dated fossil remains and paleoclimatic data, Lorenzen et al.614

(2011) demonstrate a positive correlation between musk ox genetic diversity and its615

climate-driven range size over the last 50,000 years. The δ18O data we use here do not616

account for geographic variability in temperature. Furthermore, we have not controlled for617

any potential confounders, such as population structure, range size or proportion of range618

overlap with humans. If significant population structure exists, then appropriate619

geographic coverage of the sampling will also be important. Nevertheless, our analysis620

serves as a precaution against oversimplification in the search for explanations of621

megafaunal population decline and extinctions. Incorporating additional covariate data622

into future studies may reveal a more complete, nuanced story of large mammal population623

dynamics during the Late Quaternary period. Finally, the sequence data in our analysis624

consist entirely of mitochondrial DNA. Including data from additional genetic loci may625

enhance our understanding of musk ox demographic history and provide some clarification.626

Performance and Mixing627

To confirm sufficient mixing within MCMC chains in our empirical examples, we628

monitor effective sample size (ESS) estimates of model parameters and adopt chain lengths629

that yield ESS estimates greater than 200 for the effective population size, precision, and630

covariate effect size parameters. We summarize performance in terms of ESS per minute631

(Table 1). Furthermore, we demonstrate the improvement in mixing by reporting the632

fold-increase in ESS per minute that the block-updating MCMC algorithm affords over633



more basic Metropolis-Hastings transition kernels. The block-updating scheme exploits the634

structure of the GMRF smoothing prior. Under the more basic approach, we consider a635

random walk transition kernel for effective population size parameters that proposes new636

values by adding a random value within a specified window size to the current parameter637

value. For the precision, we generate candidate values by multiplying the current parameter638

value by a random scaling factor drawn from a specified window size. The block-updating639

algorithm consistently outperforms the random walk and rescaling transition kernels.640

Notably, the MCMC chain generated under the more basic transition kernels fails to641

generate sufficient ESS after 100 million iterations in the case of the rabies example. All642

analyses were conducted on a 2.7 GHz Intel Core i5 processor with 8 GB of RAM.643

Table 1: Mixing of model parameters in terms of effective sample size (ESS) estimates per
minute and fold-improvement in mixing due to a block-updating MCMC algorithm. For
effective population size parameters, we report min-max range of ESS per minute. Fold-
improvement due to block-updating is relative to more basic transition kernels.

ESS per min. Fold-improvement
Example Eff. pop. size Precision Effect size Eff. pop. size Precision
Rabies 12.6 - 53.0 35.7 33.1 165.6 - 252.0 × 649.7 ×
Dengue 2.2 - 36.2 16.7 2.0 3.5 - 4.2 × 22.9 ×
HIV 0.3 - 4.4 4.3 1.1 1.2 - 2.4 × 4.2 ×
Musk ox 5.1 - 66.7 19.1 13.0 1.6 - 3.3 × 5.3 ×

Discussion644

We present a novel coalescent-based Bayesian framework for estimation of effective645

population size dynamics from molecular sequence data and external covariates. We646

achieve this by extending the popular Skygrid model to incorporate covariates. In doing so,647

we retain the key elements of the Skygrid: a flexible, nonparametric demographic model,648



smoothing of the trajectory via a GMRF prior, and accommodation of sequence data from649

multiple genetic loci.650

Effective population size is of fundamental interest in population genetics, infectious651

disease epidemiology, and conservation biology. It is crucial to identify explanatory factors,652

and to achieve a greater understanding of the association between the effective population653

size and such factors. In the context of viruses, it is important to assess the relationship654

between effective population size and epidemiological dynamics characterizing the number655

of infections and the spatiotemporal spread of an outbreak. Our extended Skygrid656

framework enables formal testing and characterization of such associations.657

We showcase our methodology in four examples. Our analysis of the raccoon rabies658

epidemic in the northeastern United States uncovers striking similarities between the viral659

demographic expansion and the amount of area affected by the outbreak. We reconstruct a660

cyclic pattern for the effective population size of DENV-4 in Puerto Rico, coinciding with661

trends in viral isolate count data. Comparing the population history of the HIV-1662

CRF02 AG clade in Cameroon with HIV incidence and prevalence data reveals a greater663

alignment with the HIV incidence rate than the prevalence rate. Finally, we consider the664

role of climate change in ancient musk ox population dynamics by using oxygen isotope665

data from the GRIP ice core as a proxy for temperature. We do not find a significant666

association, but our analysis demonstrates the need for a more thorough examination with667

additional covariates to follow up on previous investigations of the causes of ancient668

megafaunal population dynamics that consider a number of different factors.669

Simultaneous inference of the effective population size and its association with670

covariates enables the uncertainty of the effective population size to be taken into account671

when assessing the association. Post hoc analyses comparing the mean effective population672

size trajectory with covariates (employing a standard linear regression approach, for673

example) are possible. However, such approaches may erroneously rule out significant674



associations by overemphasizing incompatibilities between the covariates and mean675

population trajectory. Furthermore, in the case of significant associations, regression676

coefficient estimates that disregard demographic uncertainty may have inflated precision.677

Integrating covariates into the demographic inference framework not only enables678

testing and quantification of associations with the effective population size, it also provides679

additional information about past population dynamics. In two of our four examples,680

effective population size trajectories inferred from both sequence and covariate data differ681

markedly from trajectories inferred only from sequence data. In the rabies and dengue682

examples, the estimates based on sequence and covariate data are essentially consistent683

with the estimates from the sequence data (in terms of the former having BCI regions684

almost entirely contained in the BCI regions of the latter), but more precise and more685

reflective of covariate trends.686

It is possible that, in the presence of a statistically significant association between a687

covariate and the effective population size, the demographic trajectory estimated from688

sequence and covariate data will exhibit patterns inconsistent with the estimate based689

strictly on sequence data during a portion of the evolutionary history. This prospect raises690

concerns that a strong association between a covariate and the effective population size691

during one time period could cause the demographic history to be poorly estimated during692

another time period. However, such a scenario will correspond to one of two situations.693

First, the inconsistency between the two demographic reconstructions occurs for a694

relatively brief period of time. Second, the inconsistency occurs during a period for which695

the sequence data provide relatively little information about the population dynamics.696

Importantly, adding covariates to the model will not distort an originally precise697

demographic estimate. In our analysis of HIV population dynamics in Cameroon, for698

example, there is a strong association between the prevalence covariate and demographic699

history up until the late 1990s that nevertheless does not yield a significant effect size. The700



sequence data are highly informative about the population dynamics during the early701

2000s and do not allow for a significant effect size, which would result in a demographic702

estimate that diverges from the sequence data-based estimate during this period. In703

general, we recommend performing a sensitivity analysis by estimating the effective704

population size both with and without covariates and taking note of the duration and705

nature of inconsistencies between the two estimates. Also, Bayes factors (Jeffreys 1935,706

1961) can be employed to formally compare the fit of different Skygrid models to observed707

data (Y,Z). A Bayes factor quantifies the evidence in favor of model M1 over model M0 by708

taking the ratio of marginal likelihoods:709

BF10 =
P (Y,Z|M1)

P (Y,Z|M0)
=
P (M1|Y,Z)

P (M0|Y,Z)

/
P (M1)

P (M0)
. (37)710

The more general Skygrid model that incorporates covariates includes the more basic711

Skygrid model as the special case where the effect size β = 0, affording straightforward712

computation of Bayes factors.713

Our extension of the Skygrid represents a first step toward a more complete714

understanding of past population dynamics, and the utility of the approach as715

demonstrated in the real data examples is promising. Our examples have only involved one716

or two covariates, but our implementation can support a large number of predictors.717

Furthermore, we plan to equip the Skygrid with efficient variable selection procedures to718

identify optimal subsets of predictors (George and McCulloch 1993; Kuo and Mallick 1998;719

Chipman et al. 2001). There is considerable potential for further development. For720

example, there is a prominent correspondence between spatial distribution and genetic721

diversity in the raccoon rabies example, and in previous studies of megafauna species722

(Lorenzen et al. 2011). We envision combining the Skygrid with phylogeographic inference723

models (Bloomquist et al. 2010) to simultaneously infer relevant measures of a population’s724



geographic distribution from sampling location data and use them as predictors to model725

the effective population size. Such approaches would need to rely on appropriate sampling726

not only through time, but also through geographic space. Attempts to infer associations727

between covariates and effective population size dynamics can be hampered by a scarcity of728

covariate data. Fortunately, there may exist measurements of the same covariates729

corresponding to different, but similar, genetic sequence data sets. We may, for example,730

have drug treatment data corresponding to several different HIV patients and wish to731

assess the relationship between the drug and intrahost HIV evolution. In such a setting,732

Bayesian hierarchical modeling could enable pooling of information from multiple data sets.733

Finally, it may be fruitful to develop inference frameworks similar to the Skygrid that are734

based on generalized coalescent models that incorporate population structure (Notohara735

1990), recombination (Hudson 1983), and selection (Krone and Neuhauser 1997) to account736

for different reproductive phenomena and model their associations with external covariates.737
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