19 research outputs found

    Colocation of Genes Encoding a tRNA-mRNA Hybrid and a Putative Signaling Peptide on Complementary Strands in the Genome of the Hyperthermophilic Bacterium Thermotoga maritima

    No full text
    In the genome of the hyperthermophilic bacterium Thermotoga maritima, TM0504 encodes a putative signaling peptide implicated in population density-dependent exopolysaccharide formation. Although not noted in the original genome annotation, TM0504 was found to colocate, on the opposite strand, with the gene encoding ssrA, a hybrid of tRNA and mRNA (tmRNA), which is involved in a trans-translation process related to ribosome rescue and is ubiquitous in bacteria. Specific DNA probes were designed and used in real-time PCR assays to follow the separate transcriptional responses of the colocated open reading frames (ORFs) during transition from exponential to stationary phase, chloramphenicol challenge, and syntrophic coculture with Methanococcus jannaschii. TM0504 transcription did not vary under normal growth conditions. Transcription of the tmRNA gene, however, was significantly up-regulated during chloramphenicol challenge and in T. maritima bound in exopolysaccharide aggregates during methanogenic coculture. The significance of the colocation of ORFs encoding a putative signaling peptide and tmRNA in T. maritima is intriguing, since this overlapping arrangement (tmRNA associated with putative small ORFs) was found to be conserved in at least 181 bacterial genomes sequenced to date. Whether peptides related to TM0504 in other bacteria play a role in quorum sensing is not yet known, but their ubiquitous colocalization with respect to tmRNA merits further examination

    Heat Shock Response by the Hyperthermophilic Archaeon Pyrococcus furiosus

    No full text
    Collective transcriptional analysis of heat shock response in the hyperthermophilic archaeon Pyrococcus furiosus was examined by using a targeted cDNA microarray in conjunction with Northern analyses. Differential gene expression suggests that P. furiosus relies on a cooperative strategy of rescue (thermosome [Hsp60], small heat shock protein [Hsp20], and two VAT-related chaperones), proteolysis (proteasome), and stabilization (compatible solute formation) to cope with polypeptide processing during thermal stress

    Transcriptional Analysis of Biofilm Formation Processes in the Anaerobic, Hyperthermophilic Bacterium Thermotoga maritima

    No full text
    Thermotoga maritima, a fermentative, anaerobic, hyperthermophilic bacterium, was found to attach to bioreactor glass walls, nylon mesh, and polycarbonate filters during chemostat cultivation on maltose-based media at 80°C. A whole-genome cDNA microarray was used to examine differential expression patterns between biofilm and planktonic populations. Mixed-model statistical analysis revealed differential expression (twofold or more) of 114 open reading frames in sessile cells (6% of the genome), over a third of which were initially annotated as hypothetical proteins in the T. maritima genome. Among the previously annotated genes in the T. maritima genome, which showed expression changes during biofilm growth, were several that corresponded to biofilm formation genes identified in mesophilic bacteria (i.e., Pseudomonas species, Escherichia coli, and Staphylococcus epidermidis). Most notably, T. maritima biofilm-bound cells exhibited increased transcription of genes involved in iron and sulfur transport, as well as in biosynthesis of cysteine, thiamine, NAD, and isoprenoid side chains of quinones. These findings were all consistent with the up-regulation of iron-sulfur cluster assembly and repair functions in biofilm cells. Significant up-regulation of several β-specific glycosidases was also noted in biofilm cells, despite the fact that maltose was the primary carbon source fed to the chemostat. The reasons for increased β-glycosidase levels are unclear but are likely related to the processing of biofilm-based polysaccharides. In addition to revealing insights into the phenotype of sessile T. maritima communities, the methodology developed here can be extended to study other anaerobic biofilm formation processes as well as to examine aspects of microbial ecology in hydrothermal environments

    An Expression-Driven Approach to the Prediction of Carbohydrate Transport and Utilization Regulons in the Hyperthermophilic Bacterium Thermotoga maritima

    No full text
    Comprehensive analysis of genome-wide expression patterns during growth of the hyperthermophilic bacterium Thermotoga maritima on 14 monosaccharide and polysaccharide substrates was undertaken with the goal of proposing carbohydrate specificities for transport systems and putative transcriptional regulators. Saccharide-induced regulons were predicted through the complementary use of comparative genomics, mixed-model analysis of genome-wide microarray expression data, and examination of upstream sequence patterns. The results indicate that T. maritima relies extensively on ABC transporters for carbohydrate uptake, many of which are likely controlled by local regulators responsive to either the transport substrate or a key metabolic degradation product. Roles in uptake of specific carbohydrates were suggested for members of the expanded Opp/Dpp family of ABC transporters. In this family, phylogenetic relationships among transport systems revealed patterns of possible duplication and divergence as a strategy for the evolution of new uptake capabilities. The presence of GC-rich hairpin sequences between substrate-binding proteins and other components of Opp/Dpp family transporters offers a possible explanation for differential regulation of transporter subunit genes. Numerous improvements to T. maritima genome annotations were proposed, including the identification of ABC transport systems originally annotated as oligopeptide transporters as candidate transporters for rhamnose, xylose, β-xylan, and β-glucans and identification of genes likely to encode proteins missing from current annotations of the pentose phosphate pathway. Beyond the information obtained for T. maritima, the present study illustrates how expression-based strategies can be used for improving genome annotation in other microorganisms, especially those for which genetic systems are unavailable

    Proteolysis in hyperthermophilic microorganisms

    Get PDF
    Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms

    Role of the β1 Subunit in the Function and Stability of the 20S Proteasome in the Hyperthermophilic Archaeon Pyrococcus furiosus

    No full text
    The hyperthermophilic archaeon Pyrococcus furiosus genome encodes three proteasome component proteins: one α protein (PF1571) and two β proteins (β1-PF1404 and β2-PF0159), as well as an ATPase (PF0115), referred to as proteasome-activating nucleotidase. Transcriptional analysis of the P. furiosus dynamic heat shock response (shift from 90 to 105°C) showed that the β1 gene was up-regulated over twofold within 5 minutes, suggesting a specific role during thermal stress. Consistent with transcriptional data, two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that incorporation of the β1 protein relative to β2 into the 20S proteasome (core particle [CP]) increased with increasing temperature for both native and recombinant versions. For the recombinant enzyme, the β2/β1 ratio varied linearly with temperature from 3.8, when assembled at 80°C, to 0.9 at 105°C. The recombinant α+β1+β2 CP assembled at 105°C was more thermostable than either the α+β1+β2 version assembled at 90°C or the α+β2 version assembled at either 90°C or 105°C, based on melting temperature and the biocatalytic inactivation rate at 115°C. The recombinant CP assembled at 105°C was also found to have different catalytic rates and specificity for peptide hydrolysis, compared to the 90°C assembly (measured at 95°C). Combination of the α and β1 proteins neither yielded a large proteasome complex nor demonstrated any significant activity. These results indicate that the β1 subunit in the P. furiosus 20S proteasome plays a thermostabilizing role and influences biocatalytic properties, suggesting that β subunit composition is a factor in archaeal proteasome function during thermal stress, when polypeptide turnover is essential to cell survival

    Impact of Substrate Glycoside Linkage and Elemental Sulfur on Bioenergetics of and Hydrogen Production by the Hyperthermophilic Archaeon Pyrococcus furiosus▿ †

    No full text
    Glycoside linkage (cellobiose versus maltose) dramatically influenced bioenergetics to different extents and by different mechanisms in the hyperthermophilic archaeon Pyrococcus furiosus when it was grown in continuous culture at a dilution rate of 0.45 h−1 at 90°C. In the absence of S0, cellobiose-grown cells generated twice as much protein and had 50%-higher specific H2 generation rates than maltose-grown cultures. Addition of S0 to maltose-grown cultures boosted cell protein production fourfold and shifted gas production completely from H2 to H2S. In contrast, the presence of S0 in cellobiose-grown cells caused only a 1.3-fold increase in protein production and an incomplete shift from H2 to H2S production, with 2.5 times more H2 than H2S formed. Transcriptional response analysis revealed that many genes and operons known to be involved in α- or β-glucan uptake and processing were up-regulated in an S0-independent manner. Most differentially transcribed open reading frames (ORFs) responding to S0 in cellobiose-grown cells also responded to S0 in maltose-grown cells; these ORFs included ORFs encoding a membrane-bound oxidoreductase complex (MBX) and two hypothetical proteins (PF2025 and PF2026). However, additional genes (242 genes; 108 genes were up-regulated and 134 genes were down-regulated) were differentially transcribed when S0 was present in the medium of maltose-grown cells, indicating that there were different cellular responses to the two sugars. These results indicate that carbohydrate characteristics (e.g., glycoside linkage) have a major impact on S0 metabolism and hydrogen production in P. furiosus. Furthermore, such issues need to be considered in designing and implementing metabolic strategies for production of biofuel by fermentative anaerobes
    corecore