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Proteolysis in hyperthermophilic microorganisms
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Summary Proteases are found in every cell, where they rec-
ognize and break down unneeded or abnormal polypeptides or
peptide-based nutrients within or outside the cell. Genome se-
quence data can be used to compare proteolytic enzyme inven-
tories of different organisms as they relate to physiological
needs for protein modification and hydrolysis. In this review,
we exploit genome sequence data to compare hyperthermo-
philic microorganisms from the euryarchaeotal genus Pyro-
coccus, the crenarchaeote Sulfolobus solfataricus, and the
bacterium Thermotoga maritima. An overview of the proteases
in these organisms is given based on those proteases that have
been characterized and on putative proteases that have been
identified from genomic sequences, but have yet to be charac-
terized. The analysis revealed both similarities and differences
in the mechanisms utilized for proteolysis by each of these
hyperthermophiles and indicated how these mechanisms relate
to proteolysis in less thermophilic cells and organisms.

Keywords: Archaea, Bacteria, protease, Pyrococcus, Sulfolo-
bus solfataricus, Thermotoga maritima.

Introduction

Proteases are critical to the maintenance of cellular function.
They hydrolyze both external and internal nutrient sources and
recognize and break down unneeded or abnormal polypep-
tides, the latter produced as a result of environmental stress,
mutation or errors in biosynthetic processes (Tomoyasu et al.
2001). Cells have an array of proteases for processing proteins
and polypeptides (e.g., Allison and Macfarlane 1990, Guedon
et al. 2001) and for maintaining metabolic function under ab-
normal conditions (Arsene et al. 2000). Proteases range from
simple monomeric hydrolases to complex, multi-subunit
structures with molecular masses in the order of 1 MDa. Some
proteases have a high functional and structural complexity,
particularly those that are ATP-dependent, e.g., Lon, ClpXP,
ClpYQ, FtsH and the proteasome (Gottesmann 1996, Mau-
pin-Furlow et al. 2000), but whether simple or complex, all
proteases must be precisely regulated to avoid destruction of
the cell’s metabolic machinery.

Here, we exploit genomic sequence data, in conjunction
with physiological, biochemical and biophysical information,
to investigate relationships among proteolytic inventories of

hyperthermophilic microorganisms (capable of growth at
80 °C) of the euryarchaeotal genus Pyrococcus, the cren-
archaeote Sulfolobus solfataricus and the bacterium Thermo-
toga maritima. Thermotoga maritima, initially isolated from
Vulcano, Italy, has an optimum growth temperature of 80 °C
and is a fermentative anaerobe that reduces sulfur facultatively
and prefers simple and complex sugars as growth substrates
(Huber et al. 1986). Sulfolobus solfataricus, initially isolated
from a solfataras field near Naples, Italy (Zillig et al. 1980), is
an aerobe that grows at acidic pHs as low as 2.0, with an opti-
mal growth temperature of 80 °C (Brock et al. 1972). This
archaeon grows chemolithotrophically by oxidizing metal cat-
ions (Fe**) or sulfur as well as heterotrophically on simple sug-
ars. Pyrococcus is a marine hyperthermophilic genus that
includes species with optimal growth temperatures between
96 and 100 °C. Pyrococcus spp. have been isolated from
deep-sea hydrothermal vent systems, such as those found
along the North Fiji basin (P. abyssi, Erauso et al. 1993) and
Okinawa Trough (P. horikoshii, Gonzalez et al. 1998), as well
as from shallow marine environments, such as those found
around Vulcano Island, Italy (P. furiosus, Fiala and Stetter
1986). Pyrococcus spp. are strict anaerobes that reduce sulfur
facultatively and grow heterotrophically by fermentation of
proteinaceous compounds and sometimes simple sugars and
a-keto acids such as pyruvate.

Inferring protease inventory from genomic sequences

Initial efforts to assess the extent and variety of proteases in
hyperthermophiles by biochemical methods significantly un-
derestimated this biocatalytic feature. For example, Connaris
et al. (1991) and Blumentals et al. (1990) reported that gela-
tin-based zymograms of cell-free extracts from P. furiosus re-
vealed the presence of up to 13 clearing zones, some of which
were later attributed to multiple versions of a single protease
(Halio et al. 1996, Chang et al. 2001). Similar experiments
with T. maritima revealed an even more limited set of proteas-
es than observed in P. furiosus (Hicks et al. 1998). Genome se-
quence data, however, indicate that the proteolytic genotypes
of these organisms are more expansive than can be inferred
from zymogram analyses. Tables 1 and 2 show the confirmed
and putative protease-related genes in the genomes of P. fur-
iosus (http://comb5-156.umbi.umd.edu/genemate/), P. abyssi,
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sis method (Snel et al. 2000), for possible protease-gene rela-

P. horikoshii (Kawarabayasi et al. 1998), S. solfataricus (She

tionships. Homology was confirmed when amino acid se-

etal.2001) and T. maritima (Nelson et al. 1999). This informa-

quence identities were at least 25% over 50% or more of the
protein. Genomic analysis showed that Pyrococcus spp.,
S. solfataricus and T. maritima have numerous protease homo-

tion was also used to examine other hyperthermophilic and
mesophilic organisms (for more information see http://www.
che.ncsu.edu/extremophiles/). Protease-related genes were

logs to putative and confirmed proteases in other archaea and

identified through BLAST analyses of completely sequenced

bacteria, although there are many differences among these or-

prokaryotic genomes, the online database at the Kyoto Ency-
clopedia of Genes and Genomes (http://www.genome.ad.jp/

ganisms in protease inventory. This is true even when compar-
ing the protease inventory of the three species within the genus

Pyrococcus.

kegg/), and the AlignAce output files (http://arep.med.har-

vard.edu/microbial_motifs/

Putative protease/peptidases

were analyzed for known motifs with ScanProsite (http://ca.

).

expasy.org/tools/scnpsitl.html), the presence of signal pep-

tides

The ATP-dependent proteases in hyperthermophiles

(http://www.cbs.Dtu.dk/services/

SignalP

using

All prokaryotic genomes sequenced to date, including hyper-

SignalP/) and genomic organization using the STRING analy-
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Table 2. Protease-related genes in selected microorganisms.

Species ATP-dependent proteases ATP-independent proteases Peptidases Total
Thermotoga maritima 9 14 16 39
Pyrococcus furiosus 5 13 22 40
Pyrococcus abyssi 5 9 20 34
Pyrococcus horikoshii 5 9 20 34
Archaeoglobus fulgidus 4 7 11 22
Sulfolobus solfataricus 4 13 16 33
Escherichia coli 13 16 31 60

thermophiles, indicate the presence of several ATP-dependent
proteases, although there is some variation in the roster of
these enzymes among organisms. These proteases are typi-
cally implicated in protein and peptide turnover, and stress re-
sponse (for reviews see Gottesman 1996, 1999, Porankiewicz
et al. 1999, Schmidt et al. 1999). Although it is unclear how
particular functional or abnormal proteins are selected for
proteolytic processing by ATP-dependent proteases, it is a key
issue in understanding cellular function.

The Lon protease

Lon protease is unique among ATP-dependent proteases in
that it is not based on the assemblage of small subunits (i.e.,
15-25 kDa) into stacked rings that interact with separate
ATPases. Rather, Lon protease is a homotetramer, composed
of 87-kDa subunits, each containing an active site serine and a
single ATP-binding site (Maurizi 1992). Lon is ubiquitous
across all three domains of life and seemed at one point to be
the only such ATP-dependent protease. Analysis of the 7. mar-
itima genome revealed a homolog to the Escherichia coli Lon,
TM1633, referred to here as LonA. However, a second open
reading frame, TM 1869, was also annotated as a possible Lon
homolog, designated LonB, which was previously not identi-
fied. LonA has both the active site and ATP-binding site motifs
typically noted in other versions of Lon. LonB contains the ac-
tive site region (with the conserved serine residue), but not the
ATP-binding site (Figure 1). Homologs to both LonA and
LonB were noted in several bacterial genomes. However,
euryarchaeal genomes appear to encode only a single LonB
homolog. In Pyrococcus spp., the lon gene contains an intein
(http://www.neb.com/neb/frame_tech.html), a self-splicing
element functional at the protein level. Whether this impacts
its regulation or the expression of the encoded protein is
unknown. No Lon homolog could be identified in the S. sol-
fataricus genome. The archaeal Lons also have one or two pu-
tative transmembrane regions, which are absent in the Eubac-
teria, suggesting that they may be membrane-associated.
LonA and LonB are distinct enzymes, as is readily apparent
when a phylogenetic tree is constructed based on their amino
acid sequences (Figure 2). Although it is clear that LonA and
LonB are distinct enzymes, their metabolic roles and biochem-
ical specifics are unknown.

The FtsH (or HfIB) proteinase

FtsH (or HfIB) is an ATP-dependent proteinase with a zinc
metalloprotease motif that is present in Bacteria, mitochon-
dria, and chloroplasts, but not in Archaea (Schumann 1999,
Langer 2000). Unlike the proteasome, Lon protease and Clp
protease, which are cytoplasmic, the FtsH protein is anchored
to the cytoplasmic membrane through two transmembrane re-
gions. Among hyperthermophiles, FtsH has been located only
in the bacteria Aquifex aeolicus and T. maritima (see Table 1).
Although Archaea lack FtsH, we speculate that the archaeal
Lon, which has one to two putative transmembrane regions,
may replace FtsH from a metabolic standpoint.

The Clp family of proteases

The Clp family occurs in both the eubacteria and eukaryotes,
including hyperthermophilic bacteria, but appears to be absent
in hyperthermophilic archaea. Two types of Clp proteases are
known, with either CIpP or ClpQ (HslV) as the proteolytic
subunit. For full proteolytic activity, ClpP and ClpQ must as-
sociate with their respective ATPase subunits. In the case of
ClpP this can be either ClpX or ClpA ATPases, whereas ClpQ
associates with ClpY (HslU) ATPase (Porankiewicz et al.
1999). Both the ClpP and ClpQ proteases, as well as their re-
spective ATPase subunits ClpC (three homologs), ClpX and
ClpY were identified in the genomes of 7. maritima and
A. aeolicus (Deckert et al. 1998). In both T. maritima and
A. aeolicus, the clpP gene is preceded by a putative trigger fac-
tor. The trigger factor may be involved in the export of pro-
teins, acting as a chaperone to keep them in an open conforma-
tion. Moreover, ClpP in the A. aeolicus genome is followed by
ClpX. In T. maritima, the Clp ATPases are scattered through-
out the genome and are not linked to other proteases. However,
ClpC-1 in T. maritima (TMO0198) is linked to radA, which is
involved in DNA repair. We postulate that these genes are in-
volved in stress response and are coordinately regulated. The
genes encoding CIpQ and ClpY are linked on the 7. maritima
genome and are likely co-transcribed, whereas they occur sep-
arately in the A. aeolicus genome. As more is learned about
gene regulation in these two hyperthermophiles, the signifi-
cance of these alternative arrangements for ClpQ and ClpY
should become clearer.

In E. coli, expression of lon, clpP and the ATPase subunits
clpX and clpB, are all 6**-dependent (Bukau 1993), whereas in
gram-positive Bacillus subtilis and Lactococcus lactis, the

ARCHAEA VOLUME 1, 2002



PROTEASES OF HYPERTHERMOPHILIC MICROORGANISMS 67

ATP-binding site

Ecoli LonA VKKDLRQAQEMLDTDHYGLERVKDRILEYLAVQSRV--NKI CLVGPPGEGKTS GQS| 369
Paer_ LonA. VRHDLAKAEDILDADHYGLEEVKERILEYLAVQKRV - -KKL CLVGPPGVGKTS ES 365
Msmeg_Lon. DSTDLARAREMLDTDHHGLSDVKDRIVEYLAVRGAAPQRGMAVVGGIHGSG. LAGPPG*GKTS GES] 365
Bsub_LonA. DKLDLKEAGRIFLDEEHHGLEKVKERILEYLAVQKLT--KSL CLAGPPGVGKTS KS| 367
Ttherm_Lon EVLDISVTKR\YLDEDHYGLKEVKERILEYLAVRQLTQGKEV CFVGPPGVGKTS GKS| 373
Aaeol Lon. DNYDLERARENLDRDHYDLEKVKDRIITEYLATRKLTQGKE- - - - - - - FVGPPGVGKTS GRS 383
Tmar LonA. DRLDIKEARKMLDKNHYGLGEVKERILEYLVARKF - - SKNL CLVGPPGGKTSIEGRT 390
Tmar LonB. IYETNPTYSNIHFGKIEYYVRG---~----~- GFLHTDFSMIRPGSVHMANGGFIIVEAERLESQPYAWY 370
Pfur Lontr : TYNVTTETGNELA--NGLFVKNSG------ GLGTPAHERVEPGMIH -FIDEIATLSLKYQQS 380
Tpacid Lon : ------=-=---—=—--~————~—- SG------ GLETPAHERVEAGNIHMAHKGY# - FIDEINFLRPEDQQ 254
Paer LonB. : VFESHPTYDNBFGRIEYSSDQ--------- GALYTSYRQLRPGALH ILEAEKMEGEPFWD 381
ECOli LONB : =—=-------mmmmmmmm o m oo LQPGLVHQANGG# I ISLRTLIEAQPLEWM 171
Bsub_LonB. RFDERGIADPMIGSVHDPIYQGAG —————— AMGQAGIPQPKQGAVTHAHGGR- FIDEIGELHPIQMN 199
Active site
Ecoli_ LonA -MQESIQAALTV)/RARAEKLGINPDFYEKRD HVPZGATPKIbEPH] [RAD) 702
Paer_ LonA. -MAESITAALTV)YRSRAQSLGIAADFHEKRD HVPIZGATPKIbEPH] [RAD) 697
Msmeg_Lon. —MKESAQIAMSYVRAHAKQLGVDPEALNRR— HVPAGAVPKIBEPH] RGDVG 698
Bsub_ LonA. -MRESAQAAFSY)/RSKTEELGIEPDFHEKYD HVPZGAVPKIbEPH] SRENG 700
Ttherm Lon -MKESAHAALTYIFRAHREEWGLPEGFHKDYD HVPZGATPKIbEPH] WA S TGREWRMD 706
Aaeol Lon. -MKESAQAALSYRSKAEDYGIDPDIFSQVD HVPZGAVPKbEPH] [RMD, 715
Tmar LonA. -MKESARIALSV)yRKMCGE- - ECREVFEKND HVPIZGAVPKIb€PH] 18-\ TGKKWYRRD 716
Tmar_LonB. : ----- ITHSKAVLEELEGFLGSRYAQDFPLSVSASHMSFESVYSEVEEGDEIASIRAEAT RS- GiSKVIZIKOQG 665
Pfur_Lontr ——————— AKEAVIENVSAITIKRYKGEDISRYD: QFLOTYEGVEEDSIASHMS\ AT WERYNEEE TIZWR QD 668
Tpacid_Lon ——————— AKEAVIENVSAVFKKLTGKDISNMD QFVGTYEGVEEDS] UNA VL SATIANERD VIBIO}S] 548
Paer LonB. : ----- THSKGVMEELTGYLGSRYAQEFPLEISASMALE®SYGY DGDS‘SLGEVCTLISALSRTPLKQCFA 676
Ecoli_LonB ————— THAKGMMIIMQAFLMSELQLEQQIPFSASIMTFEGSYSEVRED ELCIARAS-SEAD V)5 QS@ 461
Bsub_LonB. SIRRKSMAKGSVENVLTVLRTM-GMKPSDYD FPGGIP-IneEPEy M TIGSATIZIEED TIRNEN/A 468

Figure 1. Multiple sequence alignment using CLUSTALX of the ATP-binding domain and active site region of the LonA and LonB homologs.
Abbreviations: Ecoli = Escherichia coli; Paer = Pseudomonas aeruginosa; Msmeg = Mycobacterium smegmatis; Bsub = Bacillus subtilis;
Ttherm = Thermus thermophilus; Aaeol = Aquifex aeolicus; Tmar = Thermotoga maritima; Pfur = Pyrococcus furiosus; and Tpacid = Thermo-
plasma acidophilum.

heat-shock response involves at least three classes of heat-in-
ducible genes (Hecker et al. 1996). It has recently been found
that, in gram-positive bacteria, cIpP is under the control of a
novel regulator, CtsR, belonging to Class ITI, which is 6®-inde-
pendent and lacks the cis-acting CIRCE operator sequence
(Hecker et al. 1996). Analysis of the 7. maritima genome re-
veals 70 putative transcriptional regulators that have moderate
degrees of identity to regulators from both gram-positive and
gram-negative sources (Nelson et al. 1999). Among these are
homologs to the E. coli sigma E (rpoE) and the heat-shock
operon repressor (HerA) from B. subtilis (Nelson et al. 1999).

Aaeol_LonPRO
Tma _LonAPRO
Bsub_LonAPRO
Msmeg_Lon.PRO
Tthem_Lon.PRO

_|: Ecoli_LonA.PRO

Paer_LonA PRO

However, homologs to E. coli 6°* and the gram-positive regu-
lator CtsR could not be identified. It is possible that 7. mari-
tima uses a novel mechanism, or a regulatory pathway that is a
hybrid of that in gram-positive and gram-negative organisms.

The proteasome

The 20S proteasome, or multicatalytic proteinase (MCP), is a
cylindrically shaped protease found in the Archaea, Eukarya
and the gram-positive actinomycetes (Bochtler et al. 1999,
Barber and Ferry 2001). The lack of the proteasome in other
bacteria suggests that actinomycetes acquired the protease

Tmar_LonB.PRO
Paer_LonB.PRO

Pfur_Lontrue.PRO
—’—:pacid_LonPRO

Bsub_LonBPRO

2734

Ecoli_LonBPRO

T T T T

250 200 150 100

Number of substitution events

50 0
Figure 2. Phylogenetic tree of Lon

proteins.
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through lateral gene transfer (Lupas et al. 1997). Although
most bacteria lack a version of the proteasome, they contain
the related complex ClpQY (or HslIVU), which shares a simi-
lar fold and catalytic mechanism with the proteasome
(Bochtler et al. 1997). The proteasome from the thermophilic
archaeon Thermoplasma acidophilum yielded the first struc-
ture of the proteasome and it has since become a prototype for
the three-dimensional structure and topology of the molecule
(Lowe et al. 1995). Native versions of the archaeal proteasome
have been isolated and characterized from Methanosarcina
thermophila, Methanococcus jannaschii and P. furiosus and
appear to share many structural and biochemical properties
with the T. acidophilum proteasome (Maupin-Furlow and
Ferry 1995, Bauer et al. 1996, Wilson et al. 2000). The 20S
structure comprises four heptametrical rings stacked on top of
one another (Rechsteiner et al. 1993). Each ring comprises ei-
ther o or B-type subunits, arranged in the order o;3,3,017,
with a centralized hollow channel running the entire length of
the complex (DeMartino and Slaughter 1999). To safeguard
against unwanted protein degradation, the proteasome con-
fines proteolytic activity to the interior region of this self-com-
partmentalized structure (DeMartino and Slaughter 1999,
Goldberg 2000). Although the archaeal 20S proteasome func-
tions as a discrete protease in vitro, it is not known if the 26S
proteasome is the only functional form in vivo (Maupin-
Furlow et al. 2000). Archaeal proteasomes contain various
peptidase activities; most have only chymotrypsin-like activ-
ity, although some also have high trypsin-like or caspase-like
activity. The archaeal proteasome acts in a processive manner,
chopping protein substrates at multiple places to yield peptide
fragments of three to 30 amino acids in length (Kisselev et al.
1998). Although the physiological role of the archaeal
proteasome is unclear, inhibitor-based studies show that
T. acidophilum cells can proliferate without a functional pro-
teasome under normal growth conditions, but cannot grow
without proteasome activity under heat shock conditions
(Ruepp et al. 1998).

All archaeal genomes sequenced to date contain homologs
of the 20S proteasome core structure, including members of
both Crenarchaeota and Euryarchaeota (see Tables 1 and 2).
The genomes of Aeropyrum pernix, Pyrococcus spp. and
S. solfataricus each contain two different § subunit homologs
(see Tables 1 and 2), and two different o subunits have been
identified in the halophilic archaeon Haloferax volcanii (Wil-
son et al. 1999). In Archaea, the genes encoding the o and 3
proteasome subunits appear to be transcribed as a part of inde-
pendent operons that have conserved gene organization,
whereas the genes surrounding pan (proteosome activating
nucleotidase) do not appear to be conserved (Maupin-Furlow
et al. 2000). In addition, the archaeal proteasome appears to be
a part of a superoperon containing subunits of the exosome, in-
dicating a possible functional link between RNA processing
and proteolysis in this domain (Koonin et al. 2001).

It is clear that hyperthermophiles, like their mesophilic
counterparts, have a full complement of ATP-dependent pro-
teases at their disposal. However, the proteases differ between
the two domains, the proteasome and Lon proteases being

present in Archaea and the Lon, Clp and FtsH being present in
Eubacteria. Although much is known about ATP-dependent
proteases and their metabolic roles in mesophilic eubacteria,
one cannot assume that they have identical roles or regulation
patterns in hyperthermophilic bacteria. Moreover, little is
known about the metabolic roles and regulation of the protea-
some and Lon in Archaea.

ATP-independent proteases in hyperthermophiles

Most heterotrophic hyperthermophiles can grow on proteina-
ceous substrates as primary carbon and energy sources. Such
substrates must initially be acted on by extracellular proteases,
which may or may not be cell-associated. The products of
extracellular hydrolysis are transported into the cell, presum-
ably by an ABC-type transporter, where they are further bro-
ken down to individual amino acids by the concerted action of
intracellular proteases and peptidases. It is thought that pep-
tides can be oxidized to CO, in Thermoproteus tenax,
Archaeoglobus fulgidus and S. solfataricus, with sulfur, thio-
sulfate, sulfate, oxygen, nitrite and nitrate serving as terminal
electron acceptors (Schonheit and Schifer 1995). In species
from the genera Thermococcus, Pyrococcus, Thermotoga,
Desulfurococcus and Pyrodictum, peptides are likely fer-
mented to free acids, such as acetate, isovalerate, butyrate and
phenylpyruvate, generating ATP by substrate-level phosphor-
ylation (Schifer et al. 1993, Schonheit and Schifer 1995).
Parts of these pathways can be constructed by analysis of the
genomes of these organisms, although the details of metabolic
schemes involved in peptide fermentation in these organisms
are unknown.

Proteases and peptidases presumably involved in the initial
steps in protein and peptide utilization have been isolated from
hyperthermophilic archaea, including Pyrococcus spp. (Halio
et al. 1996, Voorhorst et al. 1996, Chang et al. 2001), Thermo-
coccus stetteri (Klingeberg et al. 1995), A. pernix (Sako et al.
1997) and P. abyssi (Dib et al. 1998) (see Table 3). The only
protease isolated from 7. maritima thus far is a homomulti-
meric protease that has moderate amino acid sequence identity
to bacteriocins from mesophilic bacteria (Hicks et al. 1998).
Within the classical classification scheme for proteases,
namely, serine, aspartic, metallo and cysteine, the majority of
the enzymes characterized to date from hyperthermophiles has
been extracellular, and belongs to the serine class. Although
these enzymes have been well characterized biochemically,
little is known about their metabolic significance and even less
about their regulation.

Proteolysis in hyperthermophilic bacteria is poorly under-
stood, despite the availability of complete genomic sequences
for T maritima (Nelson et al. 1999) and A. aeolicus (Deckert et
al. 1998). To date, only two proteases (Hicks et al. 1998, Choi
et al. 1999) and a leucine aminopeptidase (Khan et al. 2000)
have been characterized biochemically from hyper-
thermophilic bacteria. A 43-kDa serine protease was identified
in Aquifex pyrophilus using a sequence tag specific for serine
proteases (Choi et al. 1999). The gene encoding the protease
was sequenced and found to contain a putative signal se-
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quence. The protease was identified in the cell wall fraction of
A. pyrophilus, demonstrating that the protease is expressed in
the native organism and that it is exported from the cell. How-
ever, the role of the protease is unclear because Aquifex spp.
appear unable to use peptides as a carbon or nitrogen source
(Deckert et al. 1998). Choi et al. (1999) suggested that the pro-
tease is associated with the cellular S-layer, but whether it is
involved in protein degradation or is involved in S-layer for-
mation is unclear. Similarly, in 7. maritima, analysis of the ge-
nome identified about 35 proteases and peptidases, 12 of
which may be exported (see Tables 1 and 2). However, growth
of T. maritima on peptides as sole carbon and energy sources
has not been reported.

Among the hyperthermophiles, proteolysis has been best
studied in members of the order Thermococcales. These or-
ganisms can use peptides as sole carbon and energy sources
and this is reflected in a range of proteolytic activities in their
cell extracts and confirmed by genomic sequence analysis. Ini-
tial efforts to study P. furiosus indicated that the organism was
highly proteolytic (Blumentals et al. 1990, Eggen et al. 1990,
Connaris et al. 1991). Analysis of the P. furiosus genome has
thus far revealed the presence of about 40 genes encoding pro-
teases, protease subunits, or peptidases (Table 1). Nine of the
identified proteases contain a putative signal sequence, sug-
gesting that they are exported from the cell. A comparative
genomics approach was also used to compare P. furiosus,
P. abyssi and P. horikoshii in an effort to access the proteolytic
inventory within this narrow phylogenetic range of the Ther-
mococcales (Table 1). Similar to P. furiosus, both P. abyssi and
P. horikoshii are highly proteolytic, with 34 genes encoding
proteolytic enzymes detected in their genome sequences. It is
apparent that, despite their close phylogenetic relationship,
there are distinct differences between these organisms in their
respective proteolytic inventories. Pyrococcus furiosus has
four proteases (pf_699579, pf_1553191, pf 1757236 and
pf_1136394) and three aminopeptidases (pf_1898123,
pf_1902688 and pf_1906416) that are absent from P. abyssi
and P. horikoshii. There is only one protease unique to
P. abyssi (CAAX Prenyl protease, PAB0555), whereas no pro-
teases yet identified are unique to P. horikoshii. Moreover,
there is a clear distinction between the pyrolysin proteases in
the Thermococcales. The pyrolysin from P. furiosus is only
17% identical to the pyrolysin-like proteases of P. abyssi and
P. horikoshii, and 33% identical to stetterolysin from
Thermococcus stetteri, whereas the pyrolysin-like proteases of
P. abyssi and P. horikoshii are 69% identical. Differences in
proteolytic content of Thermococcales can also be seen by
zymogram analysis. For example, Figure 3 shows that the
extracellular proteases expressed by P. furiosus, P. abyssi,
Thermococcus profundus, Thermococcus peptonphilius and
Thermotoga maritima vary when grown in the same medium
at their respective temperature optima with tryptone (5 g17') as
the primary carbon and energy source.

Several extracellular (Morikawa et al. 1994, Klingeberg et
al. 1995, Dib et al. 1998, Kannan et al. 2001) and membrane-
associated proteases (Voorhorst et al. 1996, 1997) have been

=90 kDa
=70
-60
=50

-40

=20

Figure 3. Extracellular proteolytic inventory from various hyper-
thermopbhiles. Pyrococcus furiosus and P. abyssi were grown at 95 °C,
and T. profundus, T. peptonophilis and Thermotoga maritima were
grown at 80 °C. The cells were removed after 14 h of growth and the
extracellular enzymes were precipitated by addition of ammonium
sulfate to 80%. Two pg of total extracellular protein was loaded onto a
12% SDS-polyacrylamide gel containing gelatin.

characterized biochemically from both Thermococcus and
Pyrococcus spp. With the exception of the thiol protease from
T. kodakaraensis, all the extracellular and membrane-associ-
ated proteases have been classified as serine proteases. The
proteases range in size from 40 to 68 kDa and are monomeric,
with the exception of the P. abyssi protease, which is
multimeric. The serine protease from 7. kodakaraensis has
broad substrate specificity, cleaving at the carboxyl termini of
Tyr, Phe, Leu, Gln, His, Thr, Ser and Ala (Kannan et al. 2001).
The other serine proteases from Thermococcus stetteri and
P. abyssi have fairly specific substrate specificity, preferring
Arg/Phe and Aromatic/Leu at the P1 position, respectively
(Klingeberg et al. 1995, Dib et al. 1998). Substrate specificity
of the thiol protease was not determined.

An intracellular protease identified in P. furiosus (Blu-
mentals et al. 1990) and designated Pyrococcus furiosus prote-
ase I (PfpI) was found to be based on a single 18.8-kDa subunit
(Halio et al. 1997). The gene encoding this subunit has puta-
tive homologs in other cells and microorganisms from the
three domains of life, including M. jannaschii, B. subtilis,
E. coli and Homo sapiens, but not T. maritima or Sacchar-
omyces cerevisiae. In vitro, Pfpl occurs in at least three func-
tional forms, a trimer, a hexamer and a dodecamer, and is most
active as a dodecamer (Chang et al. 2001). The physiological
role of Pfpl is unclear, but it complements the proteasome in
P. furiosus; in vitro, a synergistic relationship between the two
proteases has been noted (Chang et al. 2001). Because
P. furiosus lacks the tricorn protease (Table 1), we speculate
that PfpI assumes this role in P. furiosus. It also appears to be a
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predominant protease in P. furiosus based on zymogram anal-
yses. The three-dimensional structure of the Pfpl homolog in
P. horikoshii (Phpl) (90% identical at the amino acid level)
was recently reported (Du et al. 2000). The structure was con-
sistent with previously reported biophysical information: Phpl
is a dodecamer consisting of two identical six-member rings,
each with axes of symmetry such that it consists of a dimer of
trimers or a trimer of dimers. This supports the observation
that, in vitro, it exists in at least three functional forms (P.M.
Hicks, North Carolina State Univ., and R.M. Kelly, unpub-
lished data). Furthermore, even though Pfpl/Phpl are not
ATP-dependent, the structure of Phpl suggests a similar bar-
rel-like compartmentalization of the active site, reminiscent of
the 20S proteasome and ClpP. The possible relationship of
Pfpl/Phpl and other ATP-independent proteases with pro-
tected active sites to ATP-dependent proteases needs to be ex-
amined, especially with respect to the evolutionary signifi-
cance of the energetic requirement.

Sulfolobus solfataricus can use proteinaceous compounds
as primary carbon and energy sources, and analysis of the
S. solfataricus genome revealed the presence of 37 genes en-
coding proteases, protease subunits, or peptidases (Table 2).
The tricorn protease as well as the interacting F factors F1, F2
and F3, which are aminopeptidases, were also identified (She
et al. 2001). Although it has not been characterized in S. sol-
fataricus, the tricorn protease has been well characterized in
the thermophilic archaeon Thermoplasma (Tamura et al.
1998). Tricorn protease, in conjunction with its three interact-
ing factors, degrades oligopeptides in a sequential manner,
yielding free amino acids.

Two proteases have been characterized in Sulfolobus spp.; a
heat-stable intracellular serine protease from S. solfataricus
(Burlini et al. 1992), and the acid protease thermopsin from
S. acidocaldarius (Fusek et al. 1990, Lin et al. 1991). The pro-
tease from S. solfataricus has a subunit molecular mass of
54 kDa and the active form is 118 kDa, suggesting that it exists
as a dimer. The enzyme has chymotrypsin-like specificity, pre-
ferring aromatic or bulky aliphatic amino acids, but differs
from chymotrypsin in being unable to digest natural substrate
proteins like insulin chains A and B (Burlini et al. 1992).
Thermopsin has a predicted molecular mass of 32.6 kDa, but
was found to be a monomer with a molecular mass of 46 kDa.
The difference in molecular mass is likely because thermopsin
is a glycoprotein (Lin et al. 1991). Thermopsin is capable of
degrading various protein substrates, such as hemoglobin,
ovalbumin, bovine serum albumin and insulin chain B (Fusek
et al. 1990). The enzyme has a rather broad substrate specific-
ity but, similar to pepsin, prefers hydrophobic residues to flank
the cleavage site.

Proteases specific to hyperthermophiles

Genome sequence analysis shows that there is considerable
conservation of certain proteases across all domains of life and
growth temperature ranges. However, some proteases appear
unique or more common to hyperthermophiles. For example,
three clostripain-related proteases appear to be found only in

T. maritima. These proteases have limited homology (32%
identical in a 125 amino acid region) to the heterodimeric cys-
teine endoprotease from Clostridium histolyticum (Dargatz et
al. 1993). However, given the difficulties in cloning and ex-
pressing active forms of hyperthermophilic proteases in meso-
philic hosts, biophysical and biochemical information for
these enzymes may need to rely to a great extent on direct puri-
fication.

There are examples of proteases that, from a structural or
functional perspective, may be unique to hyperthermophiles.
For example, the homomultimeric protease in 7. maritima
based on an approximately 31-kDa subunit has significant
homology at the amino acid sequence level to a gene encoding
a mesophilic bacteriocin, linocin M18; this protease has been
tentatively named maritimacin (Hicks et al. 1998). A putative
homolog to this protease has also been identified in the ge-
nome sequence of P. furiosus, but the enzyme appears to be ab-
sent from the rest of the Archaea (Table 1). Linocin M18, a
multimeric assembly of a single 31-kDa subunit isolated from
Bevibacterium linens, was found to be antagonistic to a wide
spectrum of mesophilic coryneform and other gram-positive
bacteria (Valdes-Stauber and Scherer 1996). However, the
physiological function of this protein in these two hyper-
thermophilic organisms and its relationship to bacteriocins are
unknown. Initial efforts to screen the purified 7. maritima pro-
tease for bacteriocin-like activity focused on several hyper-
thermophiles that are readily cultured, including hyperthermo-
philic archaea. However, no significant antagonistic activity
was found, although the presence of the putative protease
seemed to extend the lag phase for Thermococcus litoralis
(Hicks et al. 2001).

Pyrolysin is a cell envelope-associated protease that has
N-terminal sequence homology with subtilisin-like serine pro-
teases purified from P. furiosus (Voorhorst et al. 1996). The en-
zyme exhibits endopeptidase activity and may be involved in
the first step of protein utilization during proteolytic growth
(Voorhorst et al. 1996). Pyrolysin exists as a mosaic of do-
mains shared by other proteases containing 1398 amino acid
residues, including a conserved pre-proenzyme region, a cata-
Iytic domain of 500 residues, and a large C-terminal extension,
making it one of the largest known serine proteases (de Vos et
al. 2001). Pyrolysin exhibits highest identity with the catalytic
domain of the eukaryal tripeptidyl peptidases II, a subgroup of
the subtilisin-like proteases (Voorhorst et al. 1996). Although
the catalytic domain of pyrolysin is found in a putative
subtilase from P. furiosus, the intact gene is absent from the
genome sequences of the rest of the Archaea, including
P. horikoshii and P. abyssi. However, a gene was identified in
the genome sequences of P. horikoshii (PH0310) and P. abyssi
(PAB1252), which includes the conserved pre-pro- and C-ter-
minal sequences of pyrolysin, but contains a putative protease
with a thiol-protease catalytic domain rather than serine prote-
ase activity (de Vos et al. 2001).

Another surface layer bound subtilisin-like protease, STA-
BLE, has been identified in Staphylothermus marinus (Mayr
et al. 1996) that has some relationship to pyrolysin in that spe-
cific motifs are common to both proteases. This protease pre-
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sumably digests and provides peptides to this organism, which
grows by sulfur-dependent, peptide fermentation.

Evolutionary aspects of proteolytic processes

Given that hyperthermophiles arguably represent an early evo-
lutionary linkage, the question concerning the minimum set of
proteases required for cellular function in these organisms
arises. About half of the genes contained in hyperthermophilic
genomes are still unassigned in terms of function (Nelson et al.
1999), and it seems certain that as yet undetected proteases are
among those unidentified genes. About 60—70 putative and ac-
tual proteases/peptidases can be gleaned from the E. coli ge-
nome sequence by informatics techniques similar to those
used here for the hyperthermophiles (K.R. Shockley and R.M.
Kelly, unpublished data); this is about twice as many as noted
in each of the five hyperthermophiles examined here (Table 2).
We also note that the E. coli genome is about 2.5-fold larger
than the pyrococcal and T. maritima genomes, which may re-
late to differences in protease inventory. However, S. solfatari-
cus and E. coli have comparably sized genomes but differ
significantly in the numbers of putative and confirmed pro-
teases. Information about the expression and activation of spe-
cific proteases under various environmental conditions is
needed to resolve the relationship between genotype and phe-
notype for each organism. The biochemical properties of spe-
cific proteases in these organisms will have to be reconciled
with their regulation to provide some perspective on the global
regulation of proteolysis.

It is intriguing to consider the origin and development of
proteases based on the multimeric assembly of small (~20-
30 kDa) subunits into complex ring-like structures. This is the
basis for the proteasome and Clp proteases, both of which are
ATP-dependent. Such structures help sequester the active sites
in these proteases, presumably to avoid unwanted protein turn-
over. The Pfpl from P. furiosus and its homologs are based on a
similar structural organization (~19-kDa subunits arranged
into two six member rings) yet have no ATP-dependence (Du
etal. 2000). Furthermore, there may be an additional structural
relationship between these proteases, given that antibodies
raised against the eukaryotic proteasome and E. coli ClpP rec-
ognized Pfpl in Western blots (Halio 1995). The evolutionary
significance of these multi-subunit proteases and the complex-
ity introduced through ATP-dependence merits further exami-
nation. It will be interesting to determine whether various
proteolytic phenotypes recruit specific sets of proteases to cer-
tain tasks involving protein turnover under normal and
stressed conditions and how the interplay between ATP-de-
pendence and ATP-independence is regulated. If it turns out
that hyperthermophiles contain fewer proteases than other
cells and organisms, they may provide an interesting perspec-
tive on the complex nature of protease function and regulation.
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