4 research outputs found

    Shed urinary ALCAM is an independent prognostic biomarker of three-year overall survival after cystectomy in patients with bladder cancer.

    Get PDF
    Proteins involved in tumor cell migration can potentially serve as markers of invasive disease. Activated Leukocyte Cell Adhesion Molecule (ALCAM) promotes adhesion, while shedding of its extracellular domain is associated with migration. We hypothesized that shed ALCAM in biofluids could be predictive of progressive disease. ALCAM expression in tumor (n = 198) and shedding in biofluids (n = 120) were measured in two separate VUMC bladder cancer cystectomy cohorts by immunofluorescence and enzyme-linked immunosorbent assay, respectively. The primary outcome measure was accuracy of predicting 3-year overall survival (OS) with shed ALCAM compared to standard clinical indicators alone, assessed by multivariable Cox regression and concordance-indices. Validation was performed by internal bootstrap, a cohort from a second institution (n = 64), and treatment of missing data with multiple-imputation. While ALCAM mRNA expression was unchanged, histological detection of ALCAM decreased with increasing stage (P = 0.004). Importantly, urine ALCAM was elevated 17.0-fold (P < 0.0001) above non-cancer controls, correlated positively with tumor stage (P = 0.018), was an independent predictor of OS after adjusting for age, tumor stage, lymph-node status, and hematuria (HR, 1.46; 95% CI, 1.03-2.06; P = 0.002), and improved prediction of OS by 3.3% (concordance-index, 78.5% vs. 75.2%). Urine ALCAM remained an independent predictor of OS after accounting for treatment with Bacillus Calmette-Guerin, carcinoma in situ, lymph-node dissection, lymphovascular invasion, urine creatinine, and adjuvant chemotherapy (HR, 1.10; 95% CI, 1.02-1.19; P = 0.011). In conclusion, shed ALCAM may be a novel prognostic biomarker in bladder cancer, although prospective validation studies are warranted. These findings demonstrate that markers reporting on cell motility can act as prognostic indicators

    Urinary Metabolomics Validates Metabolic Differentiation Between Renal Cell Carcinoma Stages and Reveals a Unique Metabolic Profile for Oncocytomas

    No full text
    Renal cell carcinoma (RCC) is a heterogeneous malignancy which often develops and progresses asymptomatically. Benign oncocytomas are morphologically similar to malignant chromophobe RCC and distinguishing between these two forms on cross-sectional imaging remains a challenge. Therefore, RCC-specific biomarkers are urgently required for accurate and non-invasive, pre-surgical diagnosis of benign lesions. We have previously shown that dysregulation in glycolytic and tricarboxylic acid cycle intermediates can distinguish benign lesions from RCC in a stage-specific manner. In this study, preoperative fasting urine samples from patients with renal masses were assessed by ¹H nuclear magnetic resonance (NMR). Significant alterations in levels of tricarboxylic acid cycle intermediates, carnitines and its derivatives were detected in RCC relative to benign masses and in oncocytomas vs. chromophobe RCC. Orthogonal Partial Least Square Discriminant Analysis plots confirmed stage discrimination between benign vs. pT1 (R2 = 0.42, Q2 = 0.27) and benign vs. pT3 (R2 = 0.48, Q2 = 0.32) and showed separation for oncocytomas vs. chromophobe RCC (R2 = 0.81, Q2 = 0.57) and oncocytomas vs. clear cell RCC (R2 = 0.32, Q2 = 0.20). This study validates our previously described metabolic profile distinguishing benign tumors from RCC and presents a novel metabolic signature for oncocytomas which may be exploited for diagnosis before cross-sectional imaging

    Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis

    No full text
    While many adhesion receptors are known to influence tumor progression, the mechanisms by which they dynamically regulate cell-cell adhesion remain elusive. We previously identified Activated Leukocyte Cell Adhesion Molecule (ALCAM) as a clinically relevant driver of metastasis and hypothesized that a tunable mechanism of ectodomain shedding regulates its contribution to dissemination. To test this hypothesis, we examined an under-explored ALCAM splice variant (ALCAM-Iso2) and demonstrated that loss of the membrane-proximal region of ALCAM (exon 13) increased metastasis four-fold. Mechanistic studies identified a novel MMP14-dependent membrane distal cleavage site in ALCAM-Iso2, which mediated a ten-fold increase in shedding, thereby decreasing cellular cohesion. Importantly, the loss of cohesion is not limited to the cell capable of shedding because the released extracellular domain diminished cohesion of non-shedding cells through disruption of ALCAM-ALCAM interactions. ALCAM-Iso2-dominated expression in bladder cancer tissue, compared to normal bladder, further emphasizes that ALCAM alternative splicing may contribute to clinical disease progression. The requirement for both the loss of exon 13 and the gain of metalloprotease activity suggests that ALCAM shedding and concomitant regulation of tumor cell adhesion is a locally tunable process
    corecore