6 research outputs found

    Phenytoin-related ataxia in patients with epilepsy: clinical and radiological characteristics

    Get PDF
    Purpose Phenytoin is an effective anticonvulsant for focal epilepsy. Its use can be associated with long-term adverse effects including cerebellar ataxia. Whilst phenytoin is toxic to Purkinje cells in vitro; the clinical and radiological phenotype and mechanism of cerebellar degeneration in vivo remain unclear. We describe the prevalence, clinical and radiological characteristics of phenytoin-related ataxia. Methods Patients with epilepsy receiving treatment with phenytoin were recruited from the Epilepsy clinics at Royal Hallamshire Hospital, Sheffield, UK. Neurological examination was performed on all patients after recruitment. Patients were categorised into those with and without ataxia. We determined the severity of ataxia clinically (SARA score) and the pattern of cerebellar involvement by neuroimaging (MRI volumetry and MR spectroscopy). Results Forty-seven patients were recruited. Median duration of epilepsy was 24 years, median duration of phenytoin treatment was 15 years and current median phenytoin daily dose was 325 mg. Fifty-five percent of patients complained of poor balance. Clinical evidence of ataxia was seen in 40% patients. Gait, stance and heel-shin slide were the predominant features of cerebellar dysfunction. MRI demonstrated structural, volumetric and functional deficits of the cerebellum. Only one patient with ataxia had phenytoin levels above the normal range. Conclusions Cerebellar ataxia is present in 40% of patients with epilepsy and chronic exposure to phenytoin. Patients on long-term phenytoin have reduced cerebellar volume even if they have no clinical evidence of ataxia. Evidence of structural deficits on imaging suggests a predilection for vermian involvement

    Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias

    Full text link

    Cerebellar Degeneration in Epilepsy: A Systematic Review

    No full text
    Introduction: Cerebellar degeneration has been associated in patients with epilepsy, though the exact pathogenic mechanisms are not understood. The aim of this systematic review was to identify the prevalence of cerebellar degeneration in patients with epilepsy and identify any pathogenic mechanisms. Methodology: A systematic computer-based literature search was conducted using the PubMed database. Data extracted included prevalence, clinical, neuroradiological, and neuropathological characteristics of patients with epilepsy and cerebellar degeneration. Results: We identified three consistent predictors of cerebellar degeneration in the context of epilepsy in our review: temporal lobe epilepsy, poor seizure control, and phenytoin as the treatment modality. Whole brain and hippocampal atrophy were also identified in patients with epilepsy. Conclusions: Cerebellar degeneration is prevalent in patients with epilepsy. Further prospective studies are required to confirm if the predictors identified in this review are indeed linked to cerebellar degeneration and to establish the pathogenic mechanisms that result in cerebellar insult

    The Significance of Low Titre Antigliadin Antibodies in the Diagnosis of Gluten Ataxia

    No full text
    Background: Patients with gluten ataxia (GA) without enteropathy have lower levels of antigliadin antibodies (AGA) compared to patients with coeliac disease (CD). Magnetic Resonance Spectroscopy (NAA/Cr area ratio) of the cerebellum improves in patients with GA following a strict gluten-free diet (GFD). This is associated with clinical improvement. We present our experience of the effect of a GFD in patients with ataxia and low levels of AGA antibodies measured by a commercial assay. Methods: Consecutive patients with ataxia and serum AGA levels below the positive cut-off for CD but above a re-defined cut-off in the context of GA underwent MR spectroscopy at baseline and after a GFD. Results: Twenty-one consecutive patients with GA were included. Ten were on a strict GFD with elimination of AGA, 5 were on a GFD but continued to have AGA, and 6 patients did not go on a GFD. The NAA/Cr area ratio from the cerebellar vermis increased in all patients on a strict GFD, increased in only 1 out of 5 (20%) patients on a GFD with persisting circulating AGA, and decreased in all patients not on a GFD. Conclusion: Patients with ataxia and low titres of AGA benefit from a strict GFD. The results suggest an urgent need to redefine the serological cut-off for circulating AGA in diagnosing GA

    Expanding the FDXR-Associated Disease Phenotype: Retinal Dystrophy Is a Recurrent Ocular Feature

    Get PDF
    International audiencePurpose: The purpose of this study was to report retinal dystrophy as a novel clinical feature and expand the ocular phenotype in patients harboring biallelic candidate FDXR variants.Methods: Patients carrying biallelic candidate FDXR variants were identified by whole genome sequencing (WGS) as part of the National Institute for Health Research BioResource rare-disease and the UK's 100,000 Genomes Project (100KGP) with an additional case identified by exome sequencing. Retrospective clinical data were collected from the medical records. Haplotype reconstruction was performed in families harboring the same missense variant.Results: Ten individuals from 8 unrelated families with biallelic candidate variants in FDXR were identified. In addition to bilateral optic atrophy and variable extra-ocular findings, 7 of 10 individuals manifested retinal dystrophy comprising dysfunction and degeneration of both rod and cone photoreceptors. Five of 10 subjects had sensorineural hearing loss. The previously unreported missense variant (c.1115C > A, p.(Pro372His)) was found in 5 of 8 (62.5%) study families. Haplotype reconstruction using WGS data demonstrated a likely ancestral haplotype.Conclusions: FDXR-associated disease is a phenotypically heterogeneous disorder with retinal dystrophy being a major clinical feature observed in this cohort. In addition, we hypothesize that a number of factors are likely to drive the pathogenesis of optic atrophy, retinal degeneration, and perhaps the associated systemic manifestations
    corecore