14 research outputs found
Herbal vs. Chemical Actives as Antidandruff Ingredients -Which Are More Effective in the Management of Dandruff?– An Overview
Dandruff, a clinical condition caused by Malassezia (Pityrosporum) species is of great cosmetic concern all over the world. Dandruff is known to be controlled by fungistatic ingredients in Anti-dandruff shampoos. A comparative study on the efficacy of chemical and herbal anti-dandruff ingredients on ‘as is’ basis and their performance in market shampoos was done in vitro against Pityrosporum ovale (MTCC 1374). Zinc pyrithione (ZnPTO), ketoconazole and other azole compounds recorded good anti-Pityrosporum activity among the chemical ingredients. Herbal ingredients like tea tree oil, rosemary oil, coleus oil, clove oil, pepper extract, neem extract, and basil extract also recorded anti-pityrosporum activity, but their MIC values are much higher than the synthetic ingredients. Shampoos containing ZnPTO and ketoconazole recorded higher in vitro activities than the shampoos containing herbal AD ingredients
ISOLATION AND CHARACTERIZATION OF ACTINOMYCETES FROM SOIL OF AD-DAWADMI, SAUDI ARABIA AND SCREENING THEIR ANTIBACTERIAL ACTIVITIES
Objective: To isolate and characterize novel actinomycetes and to evaluate their antibacterial activity against drug-resistant pathogenic bacteriaMethods: In the present study, 19 soil samples were collected from different localities of Ad-Dawadmi, Saudi Arabia. Actinomycetes were isolated from these samples using serial dilution and plating method on Actinomycetes isolation agar supplemented with nalidixic acid and actidione to inhibit bacteria and fungi. Crude extracts of potential actinomycetes were produced by submerged fermentation. The antimicrobial activity of crude extracts of actinomycetes was tested against different bacteria using the agar well diffusion method. Characterization of the isolates was done by morphological, physiological and biochemical methods.Results: A total of 9 (47%) isolates of actinomycetes were isolated from 19 different soil samples tested. Among them, 4 (44%) isolates confirmed as Streptomyces sp. showed potential antimicrobial activity against one or more test organisms. Crude extracts were made from these 4 actinomycetes isolates(DOM1, DOM3, DP3, DP4)and tested for their antibacterial activities against 4 different clinical bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus). Crude extract from DP3 isolate showed highest antibacterial activity against all the four test organisms (28 mm, 21 mm, 20 mm and 18 mm) respectively and DP4 showed lowest antibacterial activity against all the four test organisms (14 mm, 12 mm, 0 mm, 6 mm) respectively. The highest zone of inhibition was shown by DP3 against Staphylococcus aureus (28 mm) and Escherichia coli was resistant for DP4. Most of the Inhibition zones produced by crude extracts showed significant differences when compared with control, tested against test organisms (P<0.05). Inhibition zones produced by DP3 and DOM1 against Staphylococcus aureus were 28 mm and 23 mm, respectively which were strong active when compared with control Ciprofloxacin (18 mm).Conclusion: Further studies for purification of bioactive metabolites and molecular characterization analysis of isolated Streptomyces sp. are in progress which would be helpful in discovering novel compounds of commercial value
Can Cerbera odollam Fruit Extract Serve as an Anti-microbial Ingredient in Deodorants?
The antimicrobial activity of the methanolic extract of Cerbera odollam (suicide tree) seed kernel was studied against the common skin bacteria viz. Staphylococcus epidermidis, Micrococcus luteus and Propionibacterium acnes. Cerbera kernel methanolic extract failed to record significant antimicrobial effect when compared to Triclosan & Farnesol and hence its use for deodorant benefit may not be viable
Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells
BACKGROUND: Hypermethylation of the promoter of the tumor suppressor gene RASSF1A silences its expression and has been found to be associated with advanced grade prostatic tumors. The DNA methyltransferase (DNMT) family of enzymes are known to be involved in the epigenetic silencing of gene expression, including RASSF1A, and are often overexpressed in prostate cancer. The present study demonstrates how mahanine, a plant-derived carbazole alkaloid, restores RASSF1A expression by down-regulating specific members of the DNMT family of proteins in prostate cancer cells. RESULTS: Using methylation-specific PCR we establish that mahanine restores the expression of RASSF1A by inducing the demethylation of its promoter in prostate cancer cells. Furthermore, we show that mahanine treatment induces the degradation of DNMT1 and DNMT3B, but not DNMT3A, via the ubiquitin-proteasome pathway; an effect which is rescued in the presence of a proteasome inhibitor, MG132. The inactivation of Akt by wortmannin, a PI3K inhibitor, results in a similar down-regulation in the levels DNMT1 and DNMT3B. Mahanine treatment results in a decline in phospho-Akt levels and a disruption in the interaction of Akt with DNMT1 and DNMT3B. Conversely, the exogenous expression of constitutively active Akt inhibits the ability of mahanine to down-regulate these DNMTs, suggesting that the degradation of DNMT1 and DNMT3B by mahanine occurs via Akt inactivation. CONCLUSIONS: Taken together, we show that mahanine treatment induces the proteasomal degradation of DNMT1 and DNMT3B via the inactivation of Akt, which facilitates the demethylation of the RASSF1A promoter and restores its expression in prostate cancer cells. Therefore, mahanine could be a potential therapeutic agent for advanced prostate cancer in men when RASSF1A expression is silenced
Influence Of Chrysosporium Spp. In The Prevalence Of Dermatophytes in Soil
Eighty two soil samples were screened for the prevalence of Chrysosporium and dermatophytes. Out of the 75 positive samples 2 were M. gypseum and 73 were Chrysosporium spp.None of the soil samples yielded both Chrysosporium spp. and M. gypseum. The co- inoculation of Chrysosporium spp. with different species of dermatophytes (T. rubrum. T. Mentagrophytes. E. floccosum and M. gypseum) in sterilized soil revealed that none of the dermatophytes except M. gypseum could be recovered after the 15th day of co- inoculation. Whereas, these organisms when inoculated alone in sterilized soil, could be recovered even upto 25 days. In the light of the above finding, we suggest that Chrysosporium spp. might pose a definite challenge to dermatophytes in their saprophytic existence in soil
Role Of Abo Blood Groups In The Infection Rate Of Dandruff Caused By Pityrosporum Ovale
One hundred and sixty subjects in the general population were studied for the possible role of ABO blood groups in the infection and asymptomatic carriage rate of Pityrosporum ovale. Out of 160, 149 were positive for P. ovale in culture. Of them, 57 had dandruff and 6 had seborrhoic dermatitis. The remaining 86 were harbouring P. ovale asymptomatically. The rate of infection was almost in identical proportion with the rate of asymptomatic carrier state of P.ovale. Our study also revelated that blood group O subjects may be the most susceptible, followed by AB group. The incidence of dandruff was relatively high in males when compared to females
Solanum trilobatum in the management of atopy: Through inhibition of mast cell degranulation and moderation of release of interleukins
Solanum trilobatum is a widely used plant in the Indian indigenous systems of medicine. It is mainly used in the treatment of respiratory diseases like bronchial asthma. In our present study, we report that the aqueous and alcoholic extracts of S. trilobatum exhibited inhibition of mast cell degranulation. Further, aqueous and alcoholic extracts of S. trilobatum significantly decreased the release of IL1α and increased the release of IL8 from the cultured keratinocytes. Oral administration of the aqueous and alcoholic extracts of S. trilobatum stabilized mast cells in experimental rats
RESEARCH Open Access Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate
Background: Hypermethylation of the promoter of the tumor suppressor gene RASSF1A silences its expression and has been found to be associated with advanced grade prostatic tumors. The DNA methyltransferase (DNMT) family of enzymes are known to be involved in the epigenetic silencing of gene expression, including RASSF1A, and are often overexpressed in prostate cancer. The present study demonstrates how mahanine, a plant-derived carbazole alkaloid, restores RASSF1A expression by down-regulating specific members of the DNMT family of proteins in prostate cancer cells. Results: Using methylation-specific PCR we establish that mahanine restores the expression of RASSF1A by inducing the demethylation of its promoter in prostate cancer cells. Furthermore, we show that mahanine treatment induces the degradation of DNMT1 and DNMT3B, but not DNMT3A, via the ubiquitin-proteasome pathway; an effect which is rescued in the presence of a proteasome inhibitor, MG132. The inactivation of Akt by wortmannin, a PI3K inhibitor, results in a similar down-regulation in the levels DNMT1 and DNMT3B. Mahanine treatment results in a decline in phospho-Akt levels and a disruption in the interaction of Akt with DNMT1 and DNMT3B. Conversely, the exogenous expression of constitutively active Akt inhibits the ability of mahanine to down-regulate these DNMTs, suggesting that the degradation of DNMT1 and DNMT3B by mahanine occurs via Akt inactivation. Conclusions: Taken together, we show that mahanine treatment induces the proteasomal degradation of DNMT1 and DNMT3B via the inactivation of Akt, which facilitates the demethylation of the RASSF1A promoter and restores its expression in prostate cancer cells. Therefore, mahanine could be a potential therapeutic agent for advanced prostate cancer in men when RASSF1A expression is silenced