12 research outputs found

    Quantitative characterization of the focusing process and dynamic behavior of differently sized microparticles in a spiral microchannel

    Get PDF
    Abstract In this paper, a spiral microchannel was fabricated to systematically investigate particle dynamics. The focusing process or migration behavior of different-sized particles in the outlet region was presented. Specifically, for focused microparticles, quantitative characterization and analysis of how particles migrate towards the equilibrium positions with the increase in flow rate (De = 0.31-3.36) were performed. For unfocused microparticles, the particle migration behavior and the particlefree region's formation process were characterized over a wide range of flow rates (De = 0.31-4.58), and the emergence of double particle-free regions was observed at De C 3.36. These results provide insights into the design and operation of high-throughput particle/cell filtration and separation. Furthermore, using the location markers prefabricated along with the microchannel structures, the focusing or migration dynamics of different-sized particles along the spiral microchannel was systematically explored. The particle migration length effects on focusing degree and particle-free region width were analyzed. These analyses may be valuable for the optimization of microchannel structures. In addition, this device was successfully used to efficiently filter rare particles from a large-volume sample and separate particles of two different sizes according to their focusing states

    Heat Transfer Calculation on Plate-Type Fuel Assembly of High Flux Research Reactor

    Get PDF
    Heat transfer characteristics of fuel assemblies for a high flux research reactor with a neutron trap are numerically investigated in this study. Single-phase turbulence flow is calculated by a commercial code, FLUENT, where the computational objective covers standard and control fuel assemblies. The simulation is carried out with an inlet coolant velocity varying from 4.5 m/s to 7.5 m/s in hot assemblies. The results indicate that the cladding temperature is always lower than the saturation temperature in the calculated ranges. The temperature rise in the control fuel assembly is smaller than that of the standard fuel assembly. Additionally, the assembly with a hot spot is specially studied, and the safety of the research reactor is also approved

    Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    No full text
    Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure

    Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    No full text
    Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure

    Prediction of Flow and Temperature Distributions in a High Flux Research Reactor Using the Porous Media Approach

    No full text
    High thermal neutron fluxes are needed in some research reactors and for irradiation tests of materials. A High Flux Research Reactor (HFRR) with an inverse flux trap-converter target structure is being developed by the Reactor Engineering Analysis Lab (REAL) at Tsinghua University. This paper studies the safety of the HFRR core by full core flow and temperature calculations using the porous media approach. The thermal nonequilibrium model is used in the porous media energy equation to calculate coolant and fuel assembly temperatures separately. The calculation results show that the coolant temperature keeps increasing along the flow direction, while the fuel temperature increases first and decreases afterwards. As long as the inlet coolant mass flow rate is greater than 450 kg/s, the peak cladding temperatures in the fuel assemblies are lower than the local saturation temperatures and no boiling exists. The flow distribution in the core is homogeneous with a small flow rate variation less than 5% for different assemblies. A large recirculation zone is observed in the outlet region. Moreover, the porous media model is compared with the exact model and found to be much more efficient than a detailed simulation of all the core components

    RMC/ANSYS MULTI-PHYSICS COUPLING SOLUTIONS FOR HEAT PIPE COOLED REACTORS ANALYSES

    Get PDF
    The heat pipe cooled reactor is a solid-state reactor using heat pipes to passively transfer heat generated from the reactor, which is a potential and near-term space nuclear power system. This paper introduces the coupling scheme between the continuous energy Reactor Monte Carlo (RMC) code and the finite element method commercial software ANSYS. Monte Carlo method has the advantages of flexible geometry modeling and continuous-energy nuclear cross sections. ANSYS Parametric Design Language (APDL) is used to determine the detailed temperature distributions and geometric deformation. The on-the-fly temperature treatment of cross sections was adopted in RMC code to solve the memory problems and to speed up simulations. This paper proposed a geometric updating strategy and reactivity feedback methods for the geometric deformation of the solid-state core. The neutronic and thermal-mechanical coupling platform is developed to analyze and further to optimize the heat pipe cooled reactor design. The present coupling codes analyze a 2D central cross-section model for MEGAPOWER heat pipe cooled reactor. The thermal-mechanical feedback reveals that the solid-state reactor has a negative reactivity feedback (~1.5 pcm/K) while it has a deterioration in heat transfer due to the expansion

    RMC/ANSYS MULTI-PHYSICS COUPLING SOLUTIONS FOR HEAT PIPE COOLED REACTORS ANALYSES

    No full text
    The heat pipe cooled reactor is a solid-state reactor using heat pipes to passively transfer heat generated from the reactor, which is a potential and near-term space nuclear power system. This paper introduces the coupling scheme between the continuous energy Reactor Monte Carlo (RMC) code and the finite element method commercial software ANSYS. Monte Carlo method has the advantages of flexible geometry modeling and continuous-energy nuclear cross sections. ANSYS Parametric Design Language (APDL) is used to determine the detailed temperature distributions and geometric deformation. The on-the-fly temperature treatment of cross sections was adopted in RMC code to solve the memory problems and to speed up simulations. This paper proposed a geometric updating strategy and reactivity feedback methods for the geometric deformation of the solid-state core. The neutronic and thermal-mechanical coupling platform is developed to analyze and further to optimize the heat pipe cooled reactor design. The present coupling codes analyze a 2D central cross-section model for MEGAPOWER heat pipe cooled reactor. The thermal-mechanical feedback reveals that the solid-state reactor has a negative reactivity feedback (~1.5 pcm/K) while it has a deterioration in heat transfer due to the expansion

    Corrosion of Eutectic High-Entropy Alloys: A Review

    No full text
    High-entropy alloys (HEAs) are emerging as a new family of alloys with equal/near-equal amounts of constituting elements and outstanding properties. In particular, eutectic high-entropy alloys (EHEAs) with alternate lamella phases possess both high strength and ductility, offering the advantage of conquering the strength–ductility trade-off that could hardly be achieved by conventional alloys. While the mechanical behavior of EHEAs has been widely studied, the corrosion behavior is still not fully understood. Furthermore, the environment-induced degradation could largely decide the service life of EHEA as engineering alloys, and the eutectic structure may have a special influence on the corrosion process. This article systematically reviews the corrosion studies of EHEAs by pointing out the structural features of EHEAs, summarizing the general corrosion issues for EHEAs and identifying the specific corrosion performance of different EHEA systems. It is found that EHEAs feature micro-galvanic corrosion due to their eutectic crystal structure, and such a corrosion mode is further affected by testing time, heat treatment, temperature, and applied potential. All the corrosion-affecting factors are summarized, and future research directions are suggested, aiming at ensuring the wide engineering application of EHEAs with both high strength–ductility and corrosion resistance

    High baseline body mass index predicts recovery of CD4+ T lymphocytes for HIV/AIDS patients receiving long-term antiviral therapy.

    No full text
    The relationship between baseline BMI and CD4+ T cells during follow-up in HIV patients in China requires further evaluation. We conducted a retrospective cohort study based on adult AIDS patients who underwent or received antiretroviral therapy from 2003 to 2019 in Guangxi, China. BMI was divided into categories and compared, and after adjusting for BMI being related to the change in CD4 lymphocyte count, with normal weight as the reference group, the BMI before treatment was positively correlated with the changes in CD4+ T cells at different time periods. Among them, obese patients had significant CD4+ cell gain. In patients with pretreatment CD4+ T lymphocyte counts <200 cells/μL, a higher BMI was associated with an increased likelihood of achieving immunologic reconstitution [≥350 cells/μL: AHR: 1.02(1.01, 1.04), P = 0.004; ≥500 cells/μL: AHR: 1.03 (1.01, 1.05), P = 0.004]. Underweight in HIV patients was a risk factor for poor viral suppression [AHR: 1.24 (1.04, 1.48), P = 0.016]. Our study demonstrated that HIV/AIDS patients receiving ART with higher baseline BMI had better immune reconstitution and that baseline BMI could be an important predictor of immune reconstitution in patients receiving ART. Baseline BMI was not associated with virological failure, but a lower baseline BMI indicated poor viral suppression during follow-up
    corecore