901 research outputs found

    Analysis of Dislocation Mechanism for Melting of Elements: Pressure Dependence

    Full text link
    In the framework of melting as a dislocation-mediated phase transition we derive an equation for the pressure dependence of the melting temperatures of the elements valid up to pressures of order their ambient bulk moduli. Melting curves are calculated for Al, Mg, Ni, Pb, the iron group (Fe, Ru, Os), the chromium group (Cr, Mo, W), the copper group (Cu, Ag, Au), noble gases (Ne, Ar, Kr, Xe, Rn), and six actinides (Am, Cm, Np, Pa, Th, U). These calculated melting curves are in good agreement with existing data. We also discuss the apparent equivalence of our melting relation and the Lindemann criterion, and the lack of the rigorous proof of their equivalence. We show that the would-be mathematical equivalence of both formulas must manifest itself in a new relation between the Gr\"{u}neisen constant, bulk and shear moduli, and the pressure derivative of the shear modulus.Comment: 19 pages, LaTeX, 9 eps figure

    Pennsylvania Folklife Vol. 14, No. 1

    Get PDF
    • The Oley Valley Basketmaker • The Sheen of Copper • Pennsylvania Corncribs • Land-Clearing in Lycoming County, Pennsylvania • Funerals in My Childhood Days • Folk Medicine from Western Pennsylvania • Peddlers I Rememberhttps://digitalcommons.ursinus.edu/pafolklifemag/1017/thumbnail.jp

    Characterization of Fluorescent Eye Markers for Mammalian Transgenic Studies

    Get PDF
    Genotyping mice by DNA based methods is both laborious and costly. As an alternative, we systematically examined fluorescent proteins expressed in the lens as transgenic markers for mice. A set of eye markers has been selected such that double and triple transgenic animals can be visually identified and that fluorescence intensity in the eyes can be used to distinguish heterozygous from homozygous mice. Taken together, these eye markers dramatically reduce the time and cost of genotyping transgenics and empower analysis of genetic interaction

    Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport

    Get PDF
    Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis

    A high precision, compact electromechanical ground rotation sensor

    Get PDF
    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1×10^(−11)m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7×10^(−9)rad/√Hz at 10 mHz and 6.4×10^(−10)rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality

    Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    Get PDF
    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems

    Potent Delivery of Functional Proteins into Mammalian Cells in Vitro and in Vivo Using a Supercharged Protein

    Get PDF
    The inability of proteins to potently penetrate mammalian cells limits their usefulness as tools and therapeutics. When fused to superpositively charged GFP, proteins rapidly (within minutes) entered five different types of mammalian cells with potency up to ∼100-fold greater than that of corresponding fusions with known protein transduction domains (PTDs) including Tat, oligoarginine, and penetratin. Ubiquitin-fused supercharged GFP when incubated with human cells was partially deubiquitinated, suggesting that proteins delivered with supercharged GFP can access the cytosol. Likewise, supercharged GFP delivered functional, nonendosomal recombinase enzyme with greater efficiencies than PTDs in vitro and also delivered functional recombinase enzyme to the retinae of mice when injected in vivo.Chemistry and Chemical Biolog

    Pennsylvania Folklife Vol. 27, Folk Festival Supplement

    Get PDF
    • Hex Signs: A Living Tradition • Decoys and How to Make Them • Kutztown\u27s Plain People • The Old Country Kitchen: Where Food Preparation was an Art • Wooden Toys, Games and Puzzles: The Delight of All Children • A Sketch of the Seminar Stage Programs • Festival Focus • Folk Festival Programs • The Furniture-Makers at the Kutztown Festival • The Muzzle-Loading Gunsmith • Those Rare Things Called Antiques! • Mouth-Watering Baked Goods, Fresh From the Ovens! • The Art of the Potterhttps://digitalcommons.ursinus.edu/pafolklifemag/1079/thumbnail.jp

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape
    corecore