60 research outputs found

    IL-4 induces the formation of multinucleated giant cells and expression of ?5 integrin in central giant cell lesion

    Get PDF
    It is now well established that IL-4 has a central role in the development of monocytes to multinucleated giant cells (MGCs) by inducing the expression of integrins on the surface of monocytes. The aim of this study was to investigate the potential role of IL-4 in induction of ?5 integrin expression in the peripheral blood samples of patients with giant cell granuloma. Monocytes were isolated from peripheral blood samples of patients with central giant cell granuloma (CGCG) and healthy controls using human Monocyte Isolation Kit II. Isolated monocytes were then cultured in the absence or presence of IL-4 (10 and 20 ng/mL), and following RNA extraction and cDNA synthesis, Real-time PCR was performed to determine the level of ?5 integrin expression. The formation of CGCGs and morphological analyses were done under light microscopy. For confirmation of CGCGs, immunocytochemistry technique was also carried out by anti-RANK (receptor-activator of NF-?B ligand) antibody. In both patient and control groups, ?5 levels were significantly enhanced by increasing the IL-4 dose from 10 to 20 ng/mL. In addition, these differences were significant between patient and control groups without IL-4 treatment. On the other hand, the number of cells which expressed RANK and therefore the number of giant cells were significantly higher in the patient group in comparison to controls, as assessed by immunohistochemistry evaluations. In this study, we showed an elevation in the expression levels of ?5 integrin when stimulated by IL-4. It is strongly indicated that this integrin acts as an important mediator during macrophage to macrophage fusion and development of giant cells

    DNA Methylation Pattern as Important Epigenetic Criterion in Cancer

    Get PDF
    Epigenetic modifications can affect the long-term gene expression without any change in nucleotide sequence of the DNA. Epigenetic processes intervene in the cell differentiation, chromatin structure, and activity of genes since the embryonic period. However, disorders in genes' epigenetic pattern can affect the mechanisms such as cell division, apoptosis, and response to the environmental stimuli which may lead to the incidence of different diseases and cancers. Since epigenetic changes may return to their natural state, they could be used as important targets in the treatment of cancer and similar malignancies. The aim of this review is to assess the epigenetic changes in normal and cancerous cells, the causative factors, and epigenetic therapies and treatments

    Snail-1 Silencing by siRNA Inhibits Migration of TE-8 Esophageal Cancer Cells Through Downregulation of Metastasis-Related Genes

    Get PDF
    Purpose: Snail-1 is a transcription factor, which takes part in EMT, a process related to the emergence of invasion and cancer progression. The purpose of this study was to evaluate the effect of Snail-1 silencing on the human esophageal squamous cell carcinoma cell line, namely TE-8, in vitro. Methods: In this study, transfection of Snail-1 specific siRNA was conducted into TE-8 cells. The relative mRNA expression levels of Snail-1, Vimentin, CXCR4 and MMP-9 and transcription levels of miR-34a and let-7a were investigated by quantitative Real-time PCR. Western blotting was carried out to evaluate the Snail-1 protein level. Migration assay of TE-8 cells was also performed following the presence or absence of Snail-1 specific siRNA. MTT and TUNEL assays were performed to evaluate cell viability after Snail-1 silencing. Results: It was found that treatment of cancer cells with the Snail-specific siRNA effectively downregulated the expression of Snail-1 in both mRNA and protein levels, and vimentin, CXCR4, and MMP-9 in mRNA level. However, it elevated the transcript levels of miR-34a and let-7a expressions. Furthermore, transfection of cancer cells with the Snail-specific siRNA significantly induced apoptosis in TE8 cells. Moreover, suppression of Snail-1 led to diminished cell migration. Conclusion: It seems that Snail-specific siRNA can significantly interrupt esophageal cancer cell migration and reduce metastatic-related factors and induce miR-34a and let-7a in vitro. The bottom line is that therapeutic approaches via targeting Snail-1 can be used for ESCC treatment, suggesting that other possible target molecules for ESCC therapy require to be explored

    Cytotoxic and Apoptotic Activities of Methanolic Subfractions of Scrophularia oxysepala

    Get PDF
    Herbs have played a positive role in medicine for thousands of years. In the current study, we investigated the cytotoxicity effects of Scrophularia oxysepala methanolic subfractions and the underlying mechanism responsible for cell death in human breast carcinoma (MCF-7 cells) and mouse fibrosarcoma (WEHI-164 cells). From 60% and 80% methanolic fractions, four subfractions (Fa, Fb, Fc, and Fd), yielded from size exclusion by Sephadex-LH20 column chromatography, were chosen. MTT assay revealed that all subfractions significantly reduced cell viability after 24 h and 36 h in a dose-dependent manner; it is worth noting that Fa and Fb subfractions had the highest cytotoxicity, with IC50 values of 52.9 and 61.2 μg/mL in MCF-7 at 24 h, respectively. ELISA, TUNEL, and DNA fragmentation assay revealed that antiproliferative effects of all subfractions were associated with apoptosis on cancer cells, without any significant effect on L929 normal cells. qRT-PCR data showed that, after 24 h treatment with IC50 concentrations of the subfractions, caspase-3 expression was increased in cancer cells while the expression of Bcl-2 was decreased. S. oxysepala methanolic subfractions induce apoptosis in MCF-7 and WEHI-164 cells and could be considered as a source of natural anticancer agents

    Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance

    Get PDF
    Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method

    Evaluation of miR-107, DAPK1, and KLF4 Expression in Colorectal Tumors and Effect of Oxaliplatin and 5-FU on their Levels in Colorectal Cancer Cell Lines

    Get PDF
    Background: In recent years, the role of micro-RNAs in the cancer pathophysiology has attracted a great deal of scientific attention. MiRNAs regulate a variety of cellular functions, such as apoptosis, differentiation and migration by targeting oncogenic or tumor suppressor genes. We conducted the current study to assess the expression of miR-107, Krüppel-like factor 4 (KLF4) and death-associated protein kinase (DAPK1) genes in malignant and normal colon tissues and also colorectal cancer (CRC) model cells exposed to oxaliplatin and 5-FU chemotherapy agents. Method: In this case-control study, the tissue samples from CRC patients were collected during colonoscopy process in 2013 -2016 at Imam Reza hospital. Subsequently, the expression levels of miR-107, KLF4, and DAPK1 were detected with quantitative Real-Time PCR. Furthermore, in the in vitro phase of this study, we investigated the changes in the expression level of miR-107, KLF4 and DAPK1 transcripts after oxaliplatin and 5-FU treatment. Results: Unlike miR-107, the expression levels of KLF4 and DAPK1 genes decreased in the tumor samples compared to those in the marginal specimens. In addition, both oxaliplatin and 5-FU significantly increased the expression level of miR-107. There were significant correlations between the expression levels of miR-107, KLF4, and DAPK1genes and clinicopathological features, for instance lymph node metastasis and cell differentiation. Conclusion: The current study suggested a tumor suppressor role for KLF4 and DAPK1 in CRC. The altered expression of miR-107, KLF-4, and DAPK1 genes in CRC tumors and healthy tissues could be utilized for CRC diagnosis and prognosis. Furthermore, the studied genes could be considered as potential therapeutic targets in CRC

    Anti-Cancer Effects of Probiotic Lactobacillus acidophilus for Colorectal Cancer Cell Line Caco-2 through Apoptosis Induction

    Get PDF
    Background: Colorectal cancer is one of the most common cancers worldwide. Probiotics are useful and non-pathogenic microorganisms in the gastrointestinal tract, which can show anticancer activity through the induction of apoptosis. This study aimed to evaluate the antiproliferative effects of Lactobacillus acidophilus probiotic on the Caco-2 colorectal cancer cell line. Methods: The supernatant (secreted metabolites) and bacterial extract of L. acidophilus probiotics were prepared and used as an anti-proliferative agent on the colorectal cancer cell line, Caco-2 in vitro. The effects of supernatant and extract of L. acidophilus were evaluated on the viability and proliferation of cancer cells using MTT assay. Moreover, morphological alterations of cancer cells treated with supernatant and extract of L. acidophilus were evaluated by an inverted phase contrast microscope. The mRNA expression levels of apoptosis-related genes (SURVIVIN and SMAC) in treated cancer cells and untreated controls were evaluated using the Real-Time PCR method. Results: The results showed that the supernatant and extract of L. acidophilus inhibited the viability and proliferation of cancer cells in a dose and time-dependent manner. Moreover, various morphological alterations were observed in the treated cancer cells, which are indicators of apoptosis induction. The mRNA expression of SURVIVIN and SMAC genes were significantly up-regulated and downregulated in the treated cancer cells, respectively. Conclusion: The results of the present study suggested that the supernatant and extract of L.acidophilus could inhibit the viability and proliferation of colorectal cancer cell line, Caco-2through induction of apoptosis, increase the survival rate of colon cancer patients

    Targeted Co-Delivery of Docetaxel and cMET siRNA for Treatment of Mucin1 Overexpressing Breast Cancer Cells

    Get PDF
    Purpose: Targeted treatment of breast cancer through combination of chemotherapeutic agents and siRNA had been drawing much attention in recent researches. This study was carried out to evaluate mucin1 aptamer-conjugated chitosan nanoparticles containing docetaxel and cMET siRNA on SKBR3 cells. Methods: Nano-drugs were characterized by transmission electron microscope, Zetasizer and loading efficiency calculation. siRNA entrapment onto nanoparticles, stability of siRNA-loaded nanoparticles and conjugation of mucin1 aptamer to nanoparticles were evaluated via separate electrophoresis. Cellular uptake of the targeted nanoparticles was evaluated through GFP-plasmid expression in mucin1+ SKBR3 vs. mucin1- CHO cells. Protein expression, cell viability and gene expression were assessed by Western Blotting, MTT assay, and Quantitative Real Time-PCR, respectively. Results: Characterization of nano-drugs represented the ideal size (110.5± 3.9 nm), zeta potential (11.6± 0.8 mV), and loading efficiency of 90.7% and 88.3% for siRNA and docetaxel, respectively. Different gel electrophoresis affirmed the conjugation of aptamers to nanoparticles and entrapment of siRNA onto nanoparticles. Increased cellular uptake of aptamer-conjugated nanoparticles was confirmed by GFP expression. cMET gene silencing was confirmed by Western Blotting. The significant (p ≤0.0001) impact of combination targeted therapy vs. control on cell viability was shown. Results of Quantitative Real Time-PCR represented a remarkably decreased (p ≤0.0001) expression of the studied genes involving in tumorigenicity, metastasis, invasion, and angiogenesis (STAT3, IL8, MMP2, MMP9, and VEGF) by targeted combination treatment vs. control. Conclusion: The mucin1 aptamer-conjugated chitosan nanoparticles, containing docetaxel and cMET siRNA, is suggested for treatment of mucin1+ metastatic breast cancer cells. However, further studies should be conducted on animal models

    DNA Methylation Pattern as Important Epigenetic Criterion in Cancer

    Get PDF
    Epigenetic modifications can affect the long-term gene expression without any change in nucleotide sequence of the DNA. Epigenetic processes intervene in the cell differentiation, chromatin structure, and activity of genes since the embryonic period. However, disorders in genes’ epigenetic pattern can affect the mechanisms such as cell division, apoptosis, and response to the environmental stimuli which may lead to the incidence of different diseases and cancers. Since epigenetic changes may return to their natural state, they could be used as important targets in the treatment of cancer and similar malignancies. The aim of this review is to assess the epigenetic changes in normal and cancerous cells, the causative factors, and epigenetic therapies and treatments
    • …
    corecore